- 相關(guān)推薦
關(guān)于《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計(精選10篇)
作為一位優(yōu)秀的人民教師,通常會被要求編寫教學(xué)設(shè)計,借助教學(xué)設(shè)計可以促進我們快速成長,使教學(xué)工作更加科學(xué)化。我們該怎么去寫教學(xué)設(shè)計呢?以下是小編為大家收集的關(guān)于《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計(精選10篇),希望對大家有所幫助。
《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計 篇1
教學(xué)內(nèi)容:
人教版九年義務(wù)教育初中第三冊第108頁
教學(xué)目標(biāo):
1.理解二次函數(shù)的意義;會用描點法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2.通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;
3.通過二次函數(shù)的教學(xué)讓學(xué)生進一步體會研究函數(shù)的一般方法;加深對于數(shù)形結(jié)合思想認(rèn)識。
教學(xué)重點:二次函數(shù)的意義;會畫二次函數(shù)圖象。
教學(xué)難點:描點法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學(xué)過程設(shè)計:
一.創(chuàng)設(shè)情景、建模引入
我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個例子:
1.寫出圓的'半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2. ①
2.寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識。(板書課題)
二.歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),
那么,y叫做x的二次函數(shù).
注意:(1)必須a≠0,否則就不是二次函數(shù)了.而b,c兩數(shù)可以是零.(2)由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實數(shù).
練習(xí):
1.舉例子:請同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。
2.出難題:請同學(xué)給大家出示一個函數(shù),請同學(xué)判斷是否是二次函數(shù)。
(若學(xué)生考慮不全,教師給予補充。如:;;;的形式。)
。ㄍㄟ^學(xué)生觀察、歸納定義加深對概念的理解,既培養(yǎng)了學(xué)生的實踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過開放性的練習(xí)培養(yǎng)學(xué)生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)
由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個方面進行研究。二次函數(shù)我們也會按照定義、圖象、性質(zhì)、求解析式幾個方面進行研究。
。ㄔ谶@里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時進行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的學(xué)習(xí);進一步培養(yǎng)終身學(xué)習(xí)的能力。)
《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計 篇2
一、說課內(nèi)容:
九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題 (華東師范大學(xué)出版社)
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:抽象出實際問題中的二次函數(shù)關(guān)系。
三、教法學(xué)法設(shè)計:
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,ky=kx ,ky= , k0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k0的條件? k值對函數(shù)性質(zhì)有什么影響?
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
(二)引入新課
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)?聪旅嫒齻例子中兩個變量之間存在怎樣的關(guān)系。
例1、(1)圓的.半徑是r(cm)時,面積s (cm2)與半徑之間的關(guān)系是什么?
解:s=0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m2)與矩形一邊長x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x2+10x (0
例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)2
=100(x2+2x+1)
= 100x2+200x+100(0
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對二次函數(shù)概念的理解:
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1 (2) s=3-2t2
(3)y=(x+3)2- x2 (4) s=10r2
(5) y=22+2x (6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
(四)鞏固練習(xí)
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;
(2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。
(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
五、評價分析
本節(jié)的一個知識點就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認(rèn)識,側(cè)重點通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計 篇3
教材分析
本節(jié)課主要內(nèi)容包括:運用二次函數(shù)的最大值解決最大面積的問題,讓學(xué)生體會拋物線的頂點就是二次函數(shù)圖象的最高點(最低點),因此,可利用頂點坐標(biāo)求實際問題中的最大值(或最小值).在最大利潤這個問題中,應(yīng)用頂點坐標(biāo)求最大利潤,是較難的實際問題。
本節(jié)課的設(shè)計是從生活實例入手,讓學(xué)生體會在解決問題的過程中獲取知識的快樂,使學(xué)生成為課堂的主人。
按照新課程理念,結(jié)合本節(jié)課的具體內(nèi)容,本節(jié)課的教學(xué)目標(biāo)確定為相互關(guān)聯(lián)的三個層次:
1、知識與技能
通過實際問題與二次函數(shù)關(guān)系的探究,讓學(xué)生掌握利用頂點坐標(biāo)解決最大值(或最小值)問題的方法。
2、過程與方法
通過對實際問題的研究,體會數(shù)學(xué)知識的現(xiàn)實意義。進一步認(rèn)識如何利用二次函數(shù)的有關(guān)知識解決實際問題。滲透轉(zhuǎn)化及分類的數(shù)學(xué)思想方法。
3、情感態(tài)度價值觀
。1)通過巧妙的教學(xué)設(shè)計,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受數(shù)學(xué)的美感。
。2)在知識教學(xué)中體會數(shù)學(xué)知識的應(yīng)用價值。
本節(jié)課的教學(xué)重點是 “探究利用二次函數(shù)的最大值(或最小值)解決實際問題的方法”,教學(xué)難點是“如何將實際問題轉(zhuǎn)化為二次函數(shù)的問題”。
實驗研究:
作為一線教師,應(yīng)該靈活地處理和使用教材。充分發(fā)揮教師自己的'智慧,把學(xué)生置于教學(xué)的出發(fā)點和核心地位,應(yīng)學(xué)生而動,應(yīng)情境而變,課堂才能煥發(fā)勃勃生機,課堂上才能顯現(xiàn)真正的活力。因此我對教材進行了重新開發(fā),從學(xué)生熟悉的生活情境出發(fā),與學(xué)生生活背景有密切相關(guān)的學(xué)習(xí)素材來構(gòu)建學(xué)生學(xué)習(xí)的內(nèi)容體系。把握好以下兩方面內(nèi)容:
。ㄒ唬、利用二次函數(shù)解決實際問題的易錯點:
、兕}意不清,信息處理不當(dāng)。
、谶x用哪種函數(shù)模型解題,判斷不清。
③忽視取值范圍的確定,忽視圖象的正確畫法。
、軐嶋H問題轉(zhuǎn)化為數(shù)學(xué)問題,對學(xué)生要求較高,一般學(xué)生不易達到。
(二)、解決問題的突破點:
①反復(fù)讀題,理解清楚題意,對模糊的信息要反復(fù)比較。
、诩訌妼嶋H問題的分析,加強對幾何關(guān)系的探求,提高自己的分析能力。
、圩⒁鈱嶋H問題對自變量 取值范圍的影響,進而對函數(shù)圖象的影響。
、茏⒁鈾z驗,養(yǎng)成良好的解題習(xí)慣。
因此我由課本的一個問題轉(zhuǎn)化為兩個實際問題入手通過創(chuàng)設(shè)情境,層層設(shè)問,啟發(fā)學(xué)生自主學(xué)習(xí)。
教學(xué)目標(biāo)
1.知識與能力:初步掌握解決二次函數(shù)在閉區(qū)間上最值問題的一般解法,總結(jié)歸納出二次函數(shù)在閉區(qū)間上最值的一般規(guī)律,學(xué)會運用二次函數(shù)在閉區(qū)間上的圖像研究和理解相關(guān)問題。
2.過程與方法:通過實驗,觀察影響二次函數(shù)在閉區(qū)間上的最值的因素,在此基礎(chǔ)上討論探究出解決二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。
3.情感、態(tài)度與價值觀:通過探究,讓學(xué)生體會分類討論思想與數(shù)形結(jié)合思想在解決數(shù)學(xué)問題中的重要作用,培養(yǎng)學(xué)生分析問題、解決問題的能力,同時培養(yǎng)學(xué)生合作與交流的能力。
教學(xué)重點與難點
教學(xué)重點:尋求二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。
教學(xué)難點:含參二次函數(shù)在閉區(qū)間上的最值的求法以及分類討論思想的正確運用。
學(xué)生學(xué)情分析
我所代班級的學(xué)生是高一新生, 他們在初中已學(xué)過二次函數(shù)的簡單性質(zhì)與圖像,知道二次函數(shù)在 二次函數(shù)最值教學(xué)設(shè)計時在頂點處取得最大值或最小值,在前幾節(jié)課又學(xué)習(xí)了函數(shù)的概念與表示、單調(diào)性與最值的相關(guān)知識,已經(jīng)具備了本節(jié)課學(xué)習(xí)必須的基礎(chǔ)知識。
教法分析
根據(jù)教學(xué)實際,我將本節(jié)課設(shè)計為數(shù)學(xué)探究課,在探究的過程中,借助于多媒體教學(xué)手段,讓學(xué)生觀察幾何畫板中的動態(tài)演示,通過對二次函數(shù)圖像的“再認(rèn)識”,探究二次函數(shù)在閉區(qū)間上的最值。同時為了配合多媒體的教學(xué),準(zhǔn)備了學(xué)案讓學(xué)生配套使用。先讓學(xué)生提前預(yù)習(xí)相關(guān)內(nèi)容,對所要探究的問題有初步的了解,再在課堂上詳細(xì)的探究,課后在學(xué)案上有相應(yīng)的課后作業(yè)題讓學(xué)生鞏固所學(xué)知識。
教學(xué)過程
。ㄒ唬⿵(fù)習(xí)舊知
回憶二次函數(shù)的圖像與性質(zhì):
1. 圖像:
2. 定義域:
3. 單調(diào)性:
4. 最值:
【設(shè)計意圖】復(fù)習(xí)舊知,引入新課。
。ǘ┳灾魈骄
探究1:定軸定區(qū)間最值問題
分別在下列范圍內(nèi)求函數(shù)f(x)=x2-2x-3的最值:
二次函數(shù)最值教學(xué)設(shè)計 二次函數(shù)最值教學(xué)設(shè)計
二次函數(shù)最值教學(xué)設(shè)計
規(guī)律總結(jié):作出二次函數(shù)的圖像,通過圖像確定函數(shù)在給定區(qū)間上的最值。
【設(shè)計意圖】
通過探究
1,讓學(xué)生討論探究定函數(shù)在定區(qū)間上最值的求解方法,并通過二次函數(shù)在閉區(qū)間上圖像直觀形象地觀察、分析問題和解決問題。
。ㄈ┖献魈骄浚ê瑓⒍魏瘮(shù)最值求解問題 )
探究2:動軸定區(qū)間最值問題
求函數(shù)f(x)=x2-2tx-3, t∈R在x∈[-2,2]上的最小值。
【設(shè)計意圖】
通過探究2,讓學(xué)生討論探究動軸定區(qū)間上最小值的求解方法,并通過動態(tài)演示二次函數(shù)在閉區(qū)間上的圖像,讓學(xué)生直觀形象地觀察、分析問題和解決問題。
變式訓(xùn)練:求函數(shù)f(x)=x2-2tx-3在x∈[-2,2] ,t∈R上的最大值。
【設(shè)計意圖】
通過變式訓(xùn)練,讓學(xué)生進一步體會動軸定區(qū)間上最大值的求解方法,同時歸納出動軸定區(qū)間最值問題求解的一般規(guī)律。
規(guī)律總結(jié):移動對稱軸,比較對稱軸和區(qū)間的位置關(guān)系,再結(jié)合圖像進行進行分類討論,
注意做到“不重不漏”。
探究3:定軸動區(qū)間最值問題
求函數(shù)f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。
【設(shè)計意圖】讓學(xué)生分組討論探究3的求解方法,使學(xué)生體會運動的相對性,從而類比探究2的過程與方法可以制定出解決問題3的方法。
變式訓(xùn)練:求函數(shù)f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值.
【設(shè)計意圖】
通過變式訓(xùn)練,讓學(xué)生進一步體會定軸動區(qū)間上最大值的求解方法,同時歸納出定軸動區(qū)間最值問題求解的一般規(guī)律。
規(guī)律總結(jié):移動區(qū)間,比較對稱軸和區(qū)間的位置關(guān)系,再結(jié)合圖像進行分類討論,注意做到“不重不漏”。
(四)知識小結(jié)
本節(jié)課研究了二次函數(shù)的三類最值問題:
(1) 定軸定區(qū)間最值問題; (2) 動軸定區(qū)間最值問題; (3) 定軸動區(qū)間最值問題.
核心思想是判斷對稱軸與區(qū)間的相對位置, 應(yīng)用數(shù)形結(jié)合、分類討論思想求出最值。
【設(shè)計意圖】
歸納總結(jié)二次函數(shù)問題在閉區(qū)間上最值的一般解法和規(guī)律,完成本節(jié)課知識的建構(gòu)。
。ㄎ澹┙Y(jié)束語
數(shù)缺形時少直觀,形少數(shù)時難入微.數(shù)形結(jié)合百般好,割裂分家萬事休!
(六)課后作業(yè)
1.二次函數(shù)最值教學(xué)設(shè)計1.分別在下列范圍內(nèi)求二次函數(shù)f(x)=x2+4x-6的最值。
2. 求函數(shù)f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。
3. 求函數(shù)f(x)=x2-2x+2在x∈[t,t+1], t∈R的最小值。
【設(shè)計意圖】
學(xué)生應(yīng)用探究所得知識解決相關(guān)問題,進一步鞏固和提高二次函數(shù)在閉區(qū)間上最值的求解方法與規(guī)律。
《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計 篇4
一、教材分析
1、命題解讀
二次函數(shù)的圖象及性質(zhì)近8年考查7次,以解答題為主,且綜合性較強,一般涉及求交點坐標(biāo)及頂點坐標(biāo)。在選擇、填空題中考查的知識點有二次函數(shù)圖象與系數(shù)a、b、c的關(guān)系、與一元二次方程的關(guān)系、增減性、對稱軸、頂點坐標(biāo)及與x軸、y軸的交點。
2、教學(xué)目標(biāo)
。1)認(rèn)識二次函數(shù)是常見的簡單函數(shù)之一,也是刻畫現(xiàn)實世界變量之間關(guān)系的重要數(shù)學(xué)模型。理解二次函數(shù)的概念,掌握其函數(shù)關(guān)系式以及自變量的取值范圍。
(2)能正確地描述二次函數(shù)的圖象,能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題。
(3)、了解二次函數(shù)與一元二次方程的關(guān)系,能利用二次函數(shù)的圖象求一元二次方程的近似解。
3、教學(xué)重點:
。1)二次函數(shù)的圖象與性質(zhì)
。2)二次函數(shù)的平移
4、教學(xué)難點:
能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題。
二、教學(xué)方法:
基于本節(jié)課的特點和我們學(xué)校正在進行的“三、三、六”教學(xué)模式,我采用“先學(xué)后教,當(dāng)堂訓(xùn)練”的教學(xué)方法。即:教師激情導(dǎo)課,學(xué)生自學(xué)自做,教師進行面批,組織小組交流,展示學(xué)習(xí)成果,檢測導(dǎo)結(jié)反饋。對于課堂上學(xué)生出現(xiàn)的疑問,盡量讓學(xué)生互相解決,教師起到幫助、組織、合作、協(xié)調(diào)的作用。最后讓學(xué)生當(dāng)堂完成實踐練題和檢測導(dǎo)結(jié),經(jīng)過嚴(yán)格有梯度的訓(xùn)練,使學(xué)生學(xué)會知識、形成能力。同時鼓勵和培養(yǎng)學(xué)生提高分析能力、表達能力和探究能力。以“學(xué)—導(dǎo)—練”三步為主線,以“六環(huán)節(jié)”為結(jié)構(gòu),來進行本節(jié)課的教學(xué)。在整個教學(xué)過程中加強學(xué)生自學(xué)方法的指導(dǎo)。以問題“引”自學(xué),以自測“顯”問題,以優(yōu)生“帶”差生,以點撥“疏”疑點,以訓(xùn)練“鞏”新知。
三、學(xué)法指導(dǎo)
由于是復(fù)習(xí)課,因此我在以學(xué)生為主體的原則下,讓他們通過畫圖、觀察、比較、推理、小組交流,直至最后探索出結(jié)論。以引導(dǎo)、探究、合作、點拔、評價的方式貫穿整個課堂。
四、教學(xué)過程:
本節(jié)課設(shè)計了七個教學(xué)環(huán)節(jié):
1、挑戰(zhàn)自我;
2、考點清單;
3、夯實基礎(chǔ);
4、小結(jié)感悟;
5、目標(biāo)檢測
6、拓展延伸
7、作業(yè)布置。
1、挑戰(zhàn)自我
出示3道有關(guān)二次函數(shù)的圖象與性質(zhì),二次函數(shù)圖象的平移的中考試題,讓學(xué)生自主完成,引起有關(guān)知識點的回憶。第一題是二次函數(shù)對稱軸的考查;第二題考察圖象的平移;第三題解有關(guān)拋物線與系數(shù)a、b、c關(guān)系的題。
教學(xué)效果:學(xué)生積極投入思考,開篇就為學(xué)生創(chuàng)設(shè)了一個自由、寬松的討論氛圍。
2、考點清單
師生共同回憶二次函數(shù)的.圖象與性質(zhì)2、二次函數(shù)圖象與系數(shù)a、b、c
的關(guān)系二次函數(shù)圖象的平移
教學(xué)效果:預(yù)計學(xué)生對這些知識有遺忘,應(yīng)積極引導(dǎo)回憶問題,達到對知識點有明確的認(rèn)識。
3、夯實基礎(chǔ)
師生共同探討四道典型例題,強化知識點的靈活應(yīng)用。題讓學(xué)生先想后答,遇到難題小組交流,教師點撥,全班展示,充分發(fā)揮學(xué)生對積極主動性。
教學(xué)效果:大部分學(xué)生學(xué)習(xí)二次函數(shù)有困難,應(yīng)互幫互助,共同進步。
4、小結(jié)感悟:說說你在本節(jié)課解題過程中的收獲及疑惑?(小組交流)
教師給學(xué)生一定的時間去反思回顧,本節(jié)課對知識的研究探索過程,小結(jié)方法及相關(guān)結(jié)論,提煉數(shù)學(xué)思想,掌握數(shù)學(xué)規(guī)律,從而達到鞏固所學(xué)知識目的增強學(xué)習(xí)興趣和合作意識。
5、目標(biāo)檢測:
為學(xué)生提供自我檢測的機會,教師針對學(xué)生反饋情況,及時調(diào)整授課,查漏補缺。并要求學(xué)生在規(guī)定五分鐘內(nèi)完成,同時對每道題進行分?jǐn)?shù)量化。當(dāng)大部分學(xué)生完成后,教師出示答案,以便學(xué)生核對。同組的學(xué)生進行作業(yè)互相批改。并把結(jié)果告訴老師,以便老師掌握每位學(xué)生是否都當(dāng)堂達到學(xué)習(xí)目標(biāo)。對于當(dāng)堂不能完成任務(wù)的學(xué)生課下進行適當(dāng)?shù)妮o導(dǎo)。
6、拓展延伸:給學(xué)有余力的學(xué)生提供更多的練習(xí)機會。
7、課后作業(yè):《中考指導(dǎo)》62頁——64頁。
以上就是我的說課內(nèi)容,歡迎各位領(lǐng)導(dǎo)、同仁批評指導(dǎo)!
五、教學(xué)設(shè)計反思:
1、給學(xué)生展示自我的空間。本節(jié)課的設(shè)計本著以教師為主導(dǎo)、學(xué)生為主體,以知識為載體、培養(yǎng)學(xué)生的思維能力為重點的教學(xué)思想。教師以探究任務(wù)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供給學(xué)生自主合作探究的舞臺。在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生分類、探究、合作、歸納的能力。課堂上把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)的能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動的求知態(tài)度。
2、在課堂上要給予學(xué)生充分的時間去思考、動手實踐,而不是使合作流于形式。要把合作交流的空間真正的還給學(xué)生。教師在課堂中還要照顧到每一名學(xué)生,讓全體的學(xué)生都動起來。
《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計 篇5
教學(xué)目標(biāo):
。1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
。2)注重學(xué)生參與,聯(lián)系實際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點難點:
能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
教學(xué)過程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的`面積ym2.試將計算結(jié)果填寫在下表的空格中,
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(x)確定后,矩形的面積(y)也隨之確定,
y是x的函數(shù),試寫出這個函數(shù)的關(guān)系式,可讓學(xué)生根據(jù)表中給出的AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?
(2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達成共識:當(dāng)AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對于3,教師可提出問題,
(1)當(dāng)AB=xm時,BC長等于多少m?
(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.
二、提出問題
某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大? 在這個問題中,可提出如下問題供學(xué)生思考并回答:
1.商品的利潤與售價、進價以及銷售量之間有什么關(guān)系?
[利潤=(售價-進價)×銷售量]
2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,
[x的值不能任意取,其范圍是0≤x≤2]
5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x(0<x<10)……………………………(1) 將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;
(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個?
(各有1個)
(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式? (分別是二次多項式)
(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點?
(都是用自變量的二次多項式來表示的)
(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點? 讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時,函
數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
四、課堂練習(xí)
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3練習(xí)第1,2題。
五、小結(jié)
1.請敘述二次函數(shù)的定義.
2,許多實際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。
六、作業(yè):
《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計 篇6
設(shè)計思路
由于每個學(xué)生的基礎(chǔ)知識、智力水平和學(xué)習(xí)方法等都存在一定差別,所以本節(jié)課采用分層教學(xué)。既創(chuàng)設(shè)舞臺讓優(yōu)秀生表演,又要重視給后進生提供參與的機會,使其增強學(xué)習(xí)數(shù)學(xué)的信心。具體題目安排從易到難,形成梯度,符合學(xué)生的認(rèn)知規(guī)律,使全體學(xué)生都能得到不同程度的提高。
教學(xué)目標(biāo)
1.掌握二次函數(shù)的圖像和性質(zhì),了解一元二次方程與二次函數(shù)的關(guān)系,能依據(jù)已知條件確定二次函數(shù)的關(guān)系式。
2.通過研究生活中實際問題,讓學(xué)生體會建立數(shù)學(xué)建模的思想.通過學(xué)習(xí)和探究xxxx考點問題,滲透數(shù)形結(jié)合思想及分類討論思想。
3.查漏補缺,采用小組學(xué)習(xí)使復(fù)習(xí)更有效,學(xué)生在自主探索與合作交流的過程中,全方位“參與”問題的解決,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。
重點
探究利用二次函數(shù)的最大值(或最小值)解決實際問題的方法。
難點
如何將實際問題轉(zhuǎn)化為二次函數(shù)的問題。
教學(xué)過程
[活動1]學(xué)生分組處理前置性作業(yè)
教師出示習(xí)題答案。組織學(xué)生合作交流,深入到每個小組,針對不同情況加強指導(dǎo)。
教師重點關(guān)注學(xué)困生。
針對學(xué)生的實際情況,對習(xí)題進行分層處理,樹立學(xué)困生學(xué)習(xí)數(shù)學(xué)的信心。
[活動2]師生共同解決作業(yè)中存在的問題
學(xué)生自主研究,分組討論后,然后提出問題,教師對學(xué)生回答的問題進行評價
教師重點歸納數(shù)學(xué)思想。
通過對習(xí)題的`處理,使學(xué)生進一步加深對二次函數(shù)有關(guān)概念及性質(zhì)的理解,能用函數(shù)觀點解決實際問題。同時,小組學(xué)習(xí)也使學(xué)生全方位參與問題的解決。
[活動3]習(xí)題現(xiàn)中考
例1(xxxx,南寧)
教師結(jié)合教材對比、分析
學(xué)生小組合作,完成例題
教師歸納:本題考查了二次函數(shù)、一元二次方程與梯形的面積等知識。
對于二次函數(shù)與其他知識的綜合應(yīng)用,關(guān)鍵要讓學(xué)生掌握解題思路,把握題型,能利用數(shù)形結(jié)合思想進行分析,從而把握解題的突破口。
[活動4]例題現(xiàn)中考
例2(xxxx,濟寧)
例3(xxxx,黔東南州)
學(xué)生自學(xué),教師指導(dǎo),讓學(xué)生討論回答這兩道題的共同特點。
讓學(xué)生根據(jù)討論的結(jié)果概括、歸納出“每每型”二次函數(shù)模型的題型特點和解決這類問題的關(guān)鍵。
[活動5]知識提高階段
教師給出一組習(xí)題,學(xué)生討論完成。
知識再運用有助于知識的鞏固。
[活動6]小結(jié)、布置作業(yè)
問題
本節(jié)學(xué)了哪些內(nèi)容?你認(rèn)為最重要的內(nèi)容是什么?
布置作業(yè)
把錯題整理到作業(yè)本上。
師生共同小結(jié),加深對本節(jié)課知識的理解。
讓學(xué)生參與小結(jié)并有不同的答案,可以增強學(xué)生學(xué)習(xí)的積極性和主動性,培養(yǎng)學(xué)生對所學(xué)知識回顧思考的習(xí)慣。
《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計 篇7
教學(xué)目標(biāo)
(一)教學(xué)知識點
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標(biāo).
(二)能力訓(xùn)練要求
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
2.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.
3.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識.
(三)情感與價值觀要求
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.
2.具有初步的創(chuàng)新精神和實踐能力.
教學(xué)重點
1.體會方程與函數(shù)之間的聯(lián)系.
2.理解何時方程有兩個不等的實根,兩個相等的實數(shù)和沒有實根.
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標(biāo).
教學(xué)難點
1.探索方程與函數(shù)之間的聯(lián)系的過程.
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系.
教學(xué)方法
討論探索法.
教具準(zhǔn)備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
[師]我們學(xué)習(xí)了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關(guān)系.當(dāng)一次函數(shù)中的函數(shù)值y=0時,一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標(biāo)即為一元一次方程kx+b=0的解.
現(xiàn)在我們學(xué)習(xí)了一元二次方程ax2+bx+c=0(a≠0)和二次函數(shù)y=ax2+bx+c(a≠0),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題.
、.講授新課
一、例題講解
投影片:(§2.8.1A)
我們已經(jīng)知道,豎直上拋物體的高度h(m)與運動時間t(s)的關(guān)系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是拋出時的高度,v0(m/s)是拋出時的速度.一個小球從地面被以40m/s的速度豎直向上拋起,小球的高度h(m)與運動時間t(s)的關(guān)系如下圖所示,那么
(1)h與t的關(guān)系式是什么?
(2)小球經(jīng)過多少秒后落地?你有幾種求解方法?與同伴進行交流.
[師]請大家先發(fā)表自己的看法,然后再解答.
[生](1)h與t的關(guān)系式為h=-5t2+v0t+h0,其中的v0為40m/s,小球從地面被拋起,所以h0=0.把v0,h0代入上式即可求出h與t的關(guān)系式.
(2)小球落地時h為0,所以只要令h=-5t2+v0t+h.中的h為0,求出t即可.
還可以觀察圖象得到.
[師]很好.能寫出步驟嗎?
[生]解:(1)∵h(yuǎn)=-5t2+v0t+h0,
當(dāng)v0=40,h0=0時,
h=-5t2+40t.
(2)從圖象上看可知t=8時,小球落地或者令h=0,得:
-5t2+40t=0,
即t2-8t=0.
∴t(t-8)=0.
∴t=0或t=8.
t=0時是小球沒拋時的時間,t=8是小球落地時的時間.
二、議一議
投影片:(§2.8.1B)
二次函數(shù)①y=x2+2x,
②y=x2-2x+1,
、踶=x2-2x+2的圖象如下圖所示.
(1)每個圖象與x軸有幾個交點?
(2)一元二次方程x2+2x=0,x2-2x+1=0有幾個根?解方程驗證一下:一元二次方程x2-2x+2=0有根嗎?
(3)二次函數(shù)y=ax2+bx+c的圖象和x軸交點的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
[師]還請大家先討論后解答.
[生](1)二次函數(shù)y=x2+2x,y=x2-2x+1,y=x2-2x+2的圖象與x軸分別有兩個交點,一個交點,沒有交點.
(2)一元二次方程x2+2x=0有兩個根0,-2;方程x2-2x+1=0有兩個相等的根1或一個根1;方程x2-2x+2=0沒有實數(shù)根.
(3)從觀察圖象和討論中可知,二次函數(shù)y=x2+2x的圖象與x軸有兩個交點,交點的坐標(biāo)分別為(0,0),(-2,0),方程x2+2x=0有兩個根0,-2;
二次函數(shù)y=x2-2x+1的圖象與x軸有一個交點,交點坐標(biāo)為(1,0),方程x2-2x+1=0有兩個相等的實數(shù)根(或一個根)1;二次函數(shù)y=x2-2x+2的圖象與x軸沒有交點,方程x2-2x+2=0沒有實數(shù)根.
由此可知,二次函數(shù)y=ax2+bx+c的圖象和x軸交點的橫坐標(biāo)即為一元二次方程ax2+bx+c=0的根.
[師]大家總結(jié)得非常棒.
二次函數(shù)y=ax2+bx+c的圖象與x軸的交點有三種情況:有兩個交點、有一個交點、沒有交點.當(dāng)二次函數(shù)y=ax2+bx+c的圖象與x軸有交點時,交點的.橫坐標(biāo)就是當(dāng)y=0時自變量x的值,即一元二次方程ax2+bx+c=0的根.
三、想一想
在本節(jié)一開始的小球上拋問題中,何時小球離地面的高度是60m?你是如何知道的?
[師]請大家討論解決.
[生]在式子h=-5t2+v0t+h0中,當(dāng)h0=0,v0=40m/s,h=60m時,有
-5t2+40t=60,
t2-8t+12=0,
∴t=2或t=6.
因此當(dāng)小球離開地面2秒和6秒時,高度都是60m.
、.課堂練習(xí)
隨堂練習(xí)(P67)
、.課時小結(jié)
本節(jié)課學(xué)了如下內(nèi)容:
1.經(jīng)歷了探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會了方程與函數(shù)之間的聯(lián)系.
2.理解了二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解了何時方程有兩個不等的實根.兩個相等的實根和沒有實根.
、.課后作業(yè)
習(xí)題2.9
板書設(shè)計
§2.8.1 二次函數(shù)與一元二次方程(一)
一、1.例題講解(投影片§2.8.1A)
2.議一議(投影片§2.8.1B)
3.想一想
二、課堂練習(xí)
隨堂練習(xí)
三、課時小結(jié)
四、課后作業(yè)
備課資料
思考、探索、交流
把4根長度均為100m的鐵絲分別圍成正方形、長方形、正三角形和圓,哪個的面積最大?為什么?
解:(1)設(shè)長方形的一邊長為x m,另一邊長為(50-x)m,則
S長方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.
即當(dāng)x=25時,S最大=625.
(2)S正方形=252=625.
(3)∵正三角形的邊長為 m,高為 m,
∴S三角形= =≈481(m2).
(4)∵2πr=100,∴r= .
∴S圓=πr2=π·( )2=π· = ≈796(m2).
所以圓的面積最大.
《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計 篇8
一、教材分析
本節(jié)課在討論了二次函數(shù)y=a(x-h)2+k(a≠0)的圖像的基礎(chǔ)上對二次函數(shù)y=ax2+bx+c(a≠0)的圖像和性質(zhì)進行研究。主要的研究方法是通過配方將y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)轉(zhuǎn)化,體會知識之間在內(nèi)的聯(lián)系。在具體探究過程中,從特殊的例子出發(fā),分別研究a>0和a<0的情況,再從特殊到一般得出y=ax2+bx+c(a≠0)的圖像和性質(zhì)。
二、學(xué)情分析
本節(jié)課前,學(xué)生已經(jīng)探究過二次函數(shù)y=a(x-h)2+k(a≠0)的圖像和性質(zhì),面對一般式向頂點式的轉(zhuǎn)化,讓學(xué)上體會化歸思想,分析這兩個式子的區(qū)別。
三、教學(xué)目標(biāo)
(一)知識與能力目標(biāo)
1. 經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點坐標(biāo)的過程;
2. 能通過配方把二次函數(shù)y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,從而確定開口方向、頂點坐標(biāo)和對稱軸。
(二)過程與方法目標(biāo)
通過思考、探究、化歸、嘗試等過程,讓學(xué)生從中體會探索新知的方式和方法。
(三)情感態(tài)度與價值觀目標(biāo)
1. 經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點坐標(biāo)的過程,滲透配方和化歸的思想方法;
2. 在運用二次函數(shù)的知識解決問題的過程中,親自體會到學(xué)習(xí)數(shù)學(xué)知識的價值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)知識的興趣并獲得成功的體驗。
四、教學(xué)重難點
1.重點
通過配方求二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點坐標(biāo)。
2.難點
二次函數(shù)y=ax2+bx+c(a≠0)的圖像的性質(zhì)。
五、教學(xué)策略與 設(shè)計說明
本節(jié)課主要滲透類比、化歸數(shù)學(xué)思想。對比一般式和頂點式的區(qū)別和聯(lián)系;體會式子的恒等變形的重要意義。
六、教學(xué)過程
教學(xué)環(huán)節(jié)(注明每個環(huán)節(jié)預(yù)設(shè)的時間)
(一)提出問題(約1分鐘)
教師活動:形如y=a(x-h)2+k(a≠0)的拋物線的.對稱軸、頂點坐標(biāo)分別是什么?那么對于一般式y(tǒng)=ax2+bx+c(a≠0)頂點坐標(biāo)和對稱軸又怎樣呢?圖像又如何?
學(xué)生活動:學(xué)生快速回答出第一個問題,第二個問題引起學(xué)生的思考。
目的:由舊有的知識引出新內(nèi)容,體現(xiàn)復(fù)習(xí)與求新的關(guān)系,暗示了探究新知的方法。
(二)探究新知
1.探索二次函數(shù)y=0.5x2-6x+21的函數(shù)圖像(約2分鐘)
教師活動:教師提出思考問題。這里教師適當(dāng)引導(dǎo)能否將次一般式化成頂點式?然后結(jié)合頂點式確定其頂點和對稱軸。
學(xué)生活動:討論解決
目的:激發(fā)興趣
2.配方求解頂點坐標(biāo)和對稱軸(約5分鐘)
教師活動:教師板書配方過程:y=0.5x2-6x+21=0.5(x2-12x+42)
=0.5(x2-12x+36-36+42)
=0.5(x-6)2+3
教師還應(yīng)強調(diào)這里的配方法比一元二次方程的配方稍復(fù)雜,注意其區(qū)別與聯(lián)系。
學(xué)生活動:學(xué)生關(guān)注黑板上的講解內(nèi)容,注意自己容易出錯的地方。
目的:即加深對本課知識的認(rèn)知有增強了配方法的應(yīng)用意識。
3.畫出該二次函數(shù)圖像(約5分鐘)
教師活動:提出問題。這里要引導(dǎo)學(xué)生是否可以通過y=0.5x2的圖像的平移來說明該函數(shù)圖像。關(guān)注學(xué)生在連線時是否用平滑的曲線,對稱性如何。
學(xué)生活動:學(xué)生通過列表、描點、連線結(jié)合二次函數(shù)圖像的對稱性完成作圖。
目的:強化二次函數(shù)圖像的畫法。即確定開口方向、頂點坐標(biāo)、對稱軸結(jié)合圖像的對稱性完成圖像。
4.探究y=-2x2-4x+1的函數(shù)圖像特點(約3分鐘)
教師活動:教師提出問題。找學(xué)生板演拋物線的開口方向、頂點和對稱軸內(nèi)容,教師巡視,學(xué)生互相查找問題。這里教師要關(guān)注學(xué)生是否真正掌握了配方法的步驟及含義。
學(xué)生活動:學(xué)生獨立完成。
目的:研究a<0時一個具體函數(shù)的圖像和性質(zhì),體會研究二次函數(shù)圖像的一般方法。
5.結(jié)合該二次函數(shù)圖像小結(jié)y=ax2+bx+c(a≠0)的性質(zhì)(約14分鐘)
教師活動:教師將y=ax2+bx+c(a≠0)通過配方化成y=a(x-h)2+k(a≠0)的形式。確定函數(shù)頂點、對稱軸和開口方向并著重討論分析a>0和a<0時,y隨x的變化情況、拋物線與y的交點以及函數(shù)的最值如何。
學(xué)生活動:仔細(xì)理解記憶一般式中的頂點坐標(biāo)、對稱軸和開口方向;理解y隨x的變化情況。
目的:體會由特殊到一般的過程。體驗、觀察、分析二次函數(shù)圖像和性質(zhì)。
6.簡單應(yīng)用(約11分鐘)
教師活動:教師板書:已知拋物線y=0.5x2-2x+1.5,求這條拋物線的開口方向、頂點坐標(biāo)、對稱軸圖像和y軸的交點坐標(biāo)并確定y隨x的變化情況和最值。
教師巡視,個別指導(dǎo)。教師在這里可以用兩種方法解決該問題:i)用配方法如例題所示;ii)我們可以先求出對稱軸,然后將對稱軸代入到原函數(shù)解析式求其函數(shù)值,此時對稱軸數(shù)值和所求出的函數(shù)值即為頂點的橫、縱坐標(biāo)。
學(xué)生活動:學(xué)生先獨立完成,約3分鐘后討論交流,最后形成結(jié)論。
目的:鞏固新知
課堂小結(jié)(2分鐘)
1. 本節(jié)課研究的內(nèi)容是什么?研究的過程中你遇到了哪些知識上的問題?
2. 你對本節(jié)課有什么感想或疑惑?
布置作業(yè)(1分鐘)
1. 教科書習(xí)題22.1第6,7兩題;
2. 《課時練》本節(jié)內(nèi)容。
板書設(shè)計
提出問題 畫函數(shù)圖像 學(xué)生板演練習(xí)
例題配方過程
到頂點式的配方過程 一般式相關(guān)知識點
教學(xué)反思
在教學(xué)中我采用了合作、體驗、探究的教學(xué)方式。在我引導(dǎo)下,學(xué)生通過觀察、歸納出二次函數(shù)y=ax2+bx+c的圖像性質(zhì),體驗知識的形成過程,力求體現(xiàn)“主體參與、自主探索、合作交流、指導(dǎo)引探”的教學(xué)理念。整個教學(xué)過程主要分為三部分:第一部分是知識回顧;第二部分是學(xué)習(xí)探究;第三部分是課堂練習(xí)。從當(dāng)堂的反饋和第二天的作業(yè)情況來看,絕大多數(shù)同學(xué)能掌握本節(jié)課的知識,達到了學(xué)習(xí)目標(biāo)中的要求。
我認(rèn)為優(yōu)點主要包括:
1.教態(tài)自然,能注重身體語言的作用,聲音洪亮,提問具有啟發(fā)性。
2.教學(xué)目標(biāo)明確、思路清晰,注重學(xué)生的自我學(xué)習(xí)培養(yǎng)和小組合作學(xué)習(xí)的落實。
3.板書字體端正,格式清晰明了,突出重點、難點。
4.我覺的精彩之處是求一般式的頂點坐標(biāo)時的第二種方法,給學(xué)生減輕了一些負(fù)擔(dān),不一定非得配方或運用公式求頂點坐標(biāo)。
所以我對于本節(jié)課基本上是滿意的。但也有很多需要改進的地方主要表現(xiàn)在:
1.知識的生成過程體現(xiàn)的不夠具體,有些急于求成。在學(xué)生活動中自己引導(dǎo)的較少,時間較短,討論的不夠積極;
2.一般式圖像的性質(zhì)自己總結(jié)的較多,學(xué)生發(fā)言較少,有些知識完全可以有學(xué)生提出并生成,這樣的結(jié)論學(xué)生理解起來會更深刻;
3.學(xué)生在回答問題的過程中我老是打斷學(xué)生。提問一個問題,學(xué)生說了一半,我就迫不及待地引導(dǎo)他說出下一半,有的時候是我替學(xué)生說了,這樣學(xué)生的思路就被我打斷了。破壞學(xué)生的思路是我們教師最大的毛病,此頑疾不除,教學(xué)質(zhì)量難以保證。
4.合作學(xué)習(xí)的有效性不夠。正所謂:“水本無波,相蕩乃成漣漪;石本無火,相擊而生靈光!敝挥姓嬲炎灾、探究、合作的學(xué)習(xí)方式落到實處,才能培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會發(fā)展的公民。
重新去解讀這節(jié)課的話我會注意以上一些問題,再多一些時間給學(xué)生,讓他們?nèi)ンw驗,探究而后形成自己的知識。
《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計 篇9
教學(xué)目標(biāo)
1、經(jīng)歷用三種方式表示變量之間二次函數(shù)關(guān)系的過程,體會三種方式之間的聯(lián)系與各自不同的特點
2、能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題
3、能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進行研究
教學(xué)重點和難點
重點:用三種方式表示變量之間二次函數(shù)關(guān)系
難點:根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進行研究
教學(xué)過程設(shè)計
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
這節(jié)課,我們來學(xué)習(xí)二次函數(shù)的三種表達方式。
二、師生共同研究形成概念
1、用函數(shù)表達式表示
☆做一做書本P56矩形的周長與邊長、面積的關(guān)系
鼓勵學(xué)生間的互相交流,一定要讓學(xué)生理解周長與邊長、面積的關(guān)系。
比較全面、完整、簡單地表示出變量之間的關(guān)系
2、用表格表示
☆做一做書本P56填表
由于運算量比較大,學(xué)生的運算能力又一般,因此,建議把這個表格的一部分?jǐn)?shù)據(jù)先給出來,讓學(xué)生完成未完成的部分空格。
表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系
3、用圖象表示
☆議一議書本P56議一議
關(guān)于自變量的問題,學(xué)生往往比較難理解,講解時,可適當(dāng)多花時間講解。
可以直觀地表示出函數(shù)的.變化過程和變化趨勢
☆做一做書本P57
4、三種方法對比
☆議一議書本P58議一議
函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過程和變化趨勢;函數(shù)的表達式可以比較全面、完整、簡單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點,它們服務(wù)于不同的需要。
在對三種表示方式進行比較時,學(xué)生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應(yīng)予以肯定和鼓勵。
《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計 篇10
【知識與技能】
1.理解具體情景中二次函數(shù)的意義,理解二次函數(shù)的概念,掌握二次函數(shù)的一般形式.
2.能夠表示簡單變量之間的二次函數(shù)關(guān)系式,并能根據(jù)實際問題確定自變量的取值范圍.
【過程與方法】
經(jīng)歷探索,分析和建立兩個變量之間的二次函數(shù)關(guān)系的過程,進一步體驗如何用數(shù)學(xué)的方法描述變量之間的數(shù)量關(guān)系.
【情感態(tài)度】
體會數(shù)學(xué)與實際生活的密切聯(lián)系,學(xué)會與他人合作交流,培養(yǎng)合作意識.
【教學(xué)重點】
二次函數(shù)的概念.
【教學(xué)難點】
在實際問題中,會寫簡單變量之間的二次函數(shù)關(guān)系式教學(xué)過程.
一、情境導(dǎo)入,初步認(rèn)識
1.教材P2“動腦筋”中的兩個問題:矩形植物園的面積S(2)與相鄰于圍墻面的每一面墻的長度x()的關(guān)系式是S=-2x2+100x,(0<x<50);電腦價格(元)與平均降價率x的關(guān)系式是=6000x2-12000x+6000,(0<x<1).它們有什么共同點?一般形式是=ax2+bx+c(a,b,c為常數(shù),a≠0)這樣的函數(shù)可以叫做什么函數(shù)?二次函數(shù).
2.對于實際問題中的.二次函數(shù),自變量的取值范圍是否會有一些限制呢?有.
二、思考探究,獲取新知
二次函數(shù)的概念及一般形式
在上述學(xué)生回答后,教師給出二次函數(shù)的定義:一般地,形如=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù),其中x是自變量,a,b,c分別是函數(shù)解析式的二次項系數(shù)、一次項系數(shù)和常數(shù)項.
注意:①二次函數(shù)中二次項系數(shù)不能為0.②在指出二次函數(shù)中各項系數(shù)時,要連同符號一起指出.
【《二次函數(shù)》的復(fù)習(xí)教學(xué)設(shè)計】相關(guān)文章:
變量與函數(shù)的教學(xué)設(shè)計02-23
冪函數(shù)教學(xué)設(shè)計優(yōu)秀10-29
二次根式教學(xué)設(shè)計12-13
圓的復(fù)習(xí)教學(xué)設(shè)計06-15
《總復(fù)習(xí)》教學(xué)設(shè)計04-15
《復(fù)習(xí)4》教學(xué)設(shè)計04-27
數(shù)學(xué)函數(shù)與方程教學(xué)設(shè)計(精選8篇)03-05
《一次函數(shù)》 教學(xué)設(shè)計03-28
二次函數(shù)的中考試題匯編08-06