- 相關推薦
人教版二次根式的乘除教學設計(精選13篇)
教學設計是根據(jù)課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設想和計劃。一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環(huán)節(jié)。下面是小編給大家?guī)砣私贪娑胃降某顺虒W設計,希望對大家有幫助。
二次根式的乘除教學設計 篇1
1、教學目標
。1)利用歸納類比的方法得出二次根式的除法法則和商的算術平方根的性質(zhì);
。2)會進行簡單的二次根式的除法運算;
(3) 理解最簡二次根式的概念
2、學情分析
本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術平方根的性質(zhì)來進行。二次根式的除法與分式的運算類似,如果分子、分母中含有相同的.因式,可以直接約去,以簡化運算。教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結(jié)果,明確運算方向。
3、重點難點
重點:二次根式的乘法法則與積的算術平方根的性質(zhì)。
難點:二次根式的除法法則與商的算術平方根的性質(zhì)之間的關系和應用。
4、教學過程
1、教學活動
活動1【導入】復習提問,探究規(guī)律
問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動 學生回答。
【設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則。
2、觀察思考,理解法則
問題2 教材第8頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?
師生活動 學生回答,給出正確答案后,教師引導學生思考,并總結(jié)二次根式除法法則:。
問題3 對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動 學生思考,回答。學生能說明根據(jù)分數(shù)的意義知道,分母不為零就可以了。
【設計意圖】學生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復雜的二次根式的運算時出現(xiàn)錯誤。
問題4 對例題的運算你有什么看法?是如何進行的?
師生活動 學生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。
【設計意圖】讓學生初步利用二次根式的性質(zhì)、乘除法法則進行簡單的運算。
問題5 對比積的算術平方根的性質(zhì),商的算術平方根有沒有類似性質(zhì)?
師生活動 學生類比地發(fā)現(xiàn),商的算術平方根等于算術平方根的商,即 。利用該性質(zhì)可以進行二次根式的化簡。
活動2【活動】例題示范,學會應用
例1 計算: (1) ; (2) ; (3) 。
師生活動 提問:你有幾種方法去掉分母中的根號?去分母的依據(jù)分別是什么?
再提問:第(2)用什么方法計算更簡捷?第(3)題根號下含字母在移出根號時應注意什么?
【設計意圖】通過具體問題,讓學生在實際運算中培養(yǎng)運算能力,訓練運算技能,
問題5 你能從例題的解答過程中,總結(jié)一下二次根式的運算結(jié)果有什么特征嗎?
師生活動 學生總結(jié),師生共同補充、完善。要總結(jié)出:
。1)這些根式的被開方數(shù)都不含分母;
。2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;
。3)分母中不含根號;
【設計意圖】引導學生及時總結(jié),提出最簡二次根式的概念,要強調(diào),在二次根式的運算中,一般要把最后結(jié)果化為最簡二次根式。
問題6 課件展示一組二次根式的計算、化簡題。
【設計意圖】讓學生用總結(jié)出的結(jié)論進行二次根式的運算。
活動3【練習】鞏固概念,學以致用
例2 教材第9頁例7。
師生活動提問 本題是以長方形面積為背景的數(shù)學問題,二次根式的除法運算在此發(fā)揮什么作用?
再提問 章引言中的問題現(xiàn)在能解決了嗎?
【設計意圖】鞏固性練習,同時培養(yǎng)學生應用二次根式的乘除運算法則解決實際問題的能力。
活動4【測試】目標檢測設計
1、在xx中,最簡二次根式為 。
【設計意圖】考查對最簡二次根式的概念的理解。
2、化簡下列各式為最簡二次根式:
【設計意圖】復習二次根式的運算法則和運算性質(zhì)。鼓勵學生用不同方法進行計算。對于分母含二次根式的處理,要結(jié)合整式的乘法公式進行計算。
3、化簡:(1) ; (2) 。
【設計意圖】綜合運用二次根式的概念、性質(zhì)和運算法則進行二次根式的運算。
活動5【作業(yè)】布置作業(yè)
教科書第10頁練習第1,2,3題;
教科書習題16.2第10,11題。
二次根式的乘除教學設計 篇2
【教學目標】
1.運用法則
進行二次根式的乘除運算;
2.會用公式
化簡二次根式。
【教學重點】
運用
進行化簡或計算
【教學難點】
經(jīng)歷二次根式的乘除法則的探究過程
【教學過程】
一、情境創(chuàng)設:
1.復習舊知:什么是二次根式?已學過二次根式的哪些性質(zhì)?
2.計算:
二、探索活動:
1.學生計算;
2.觀察上式及其運算結(jié)果,看看其中有什么規(guī)律?
3.概括:
得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。
將上面的公式逆向運用可得:
積的算術平方根,等于積中各因式的算術平方根的.積。
三、例題講解:
1.計算:
2.化簡:
小結(jié):如何化簡二次根式?
1.(關鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;
2.P62結(jié)果中,被開方數(shù)應不含能開得盡方的因數(shù)或因式。
四、課堂練習:
(一).P62 練習1、2
其中2中(5)
注意:
不是積的形式,要因數(shù)分解為36×16=242.
(二).P67 3 計算 (2)(4)
補充練習:
1.(x>0,y>0)
2.拓展與提高:
化簡:
1).(a>0,b>0)
2).(y
2.若,求m的取值范圍。
☆3.已知:,求的值。
五、本課小結(jié)與作業(yè):
小結(jié):二次根式的乘法法則
作業(yè):
1).課課練P9-10
2).補充習題
二次根式的乘除教學設計 篇3
1.教學目標
(1)經(jīng)歷二次根式的乘法法則和積的算術平方根的性質(zhì)的形成過程;會進行簡單的二次根式的乘法運算;
(2)會用公式化簡二次根式.
2.目標解析
(1)學生能通過計算發(fā)現(xiàn)規(guī)律并對其進行一般化的推廣,得出乘法法則的內(nèi)容;
(2)學生能利用二次根式的乘法法則和積的算術平方根的性質(zhì),化簡二次根式.
3、教學問題診斷分析
本節(jié)課的學習中,學生在得出乘法法則和積的算術平方根的性質(zhì)后,對于何時該選用何公式簡化運算感到困難.運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關,由于該內(nèi)容與以前學過的實數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學中,要多從聯(lián)系性上下力氣.,培養(yǎng)學生良好的運算習慣.
在教學時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:
(1)如果被開方數(shù)是分數(shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進行化簡(例見教科書例6解法1),也可以先寫成算術平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);
(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.
本節(jié)課的教學難點為:二次根式的性質(zhì)及乘法法則的正確應用和二次根式的化簡.
4、教學過程設計
1.復習引入,探究新知
我們前面已經(jīng)學習了二次根式的概念和性質(zhì),本節(jié)課開始我們要學習二次根式的乘除.本節(jié)課先學習二次根式的乘法.
問題1 什么叫二次根式?二次根式有哪些性質(zhì)?
師生活動 學生回答。
【設計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質(zhì).
問題2 教材第6頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?
師生活動 學生計算、思考并嘗試歸納,引導學生用自己的語言描述乘法法則的內(nèi)容.
【設計意圖】學生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學生用數(shù)學語言和文字分別描述法則,以培養(yǎng)學生的符號意識.
2.觀察比較,理解法則
問題3 簡單的.根式運算.
師生活動 學生動手操作,教師檢驗.
問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?
師生活動 學生回答,給出正確答案后,教師給出積的算術平方根的性質(zhì).
【設計意圖】讓學生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術平方根的性質(zhì),性質(zhì)是為運算服務的,積的算術平方根的性質(zhì)將積的算術平方根分解成幾個因數(shù)或因式的算術平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學生的運算能力.
3.例題示范,學會應用
例1 化簡:(1)二次根式的乘除;(2)二次根式的乘除.
師生活動 提問:你是怎么理解例(1)的?
如果學生回答不完善,再追問:這個問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認為本題怎樣才達到了化簡的效果?
師生合作回答上述問題.對于根式運算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外.
再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?
【設計意圖】通過運算,培養(yǎng)學生的運算能力,明確二次根式化簡的方向.積的算術平方根的性質(zhì)可以進行二次根式的化簡.
例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除
師生活動 學生計算,教師檢驗.
(1)在被開方數(shù)相乘的時候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;
(2)二次根式的乘法運算類似于整式的乘法運算,交換律、結(jié)合律都是適用的.對于根號外有系數(shù)的根式在相乘時,可以將系數(shù)先相乘作為積的系數(shù),再對根式進行運算;
(3)例(3)的運算是選學內(nèi)容.讓學有余力的學生學到“根號下為字母的二次根式”的運算.本題先利用積的算術平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.
【設計意圖】引導學生及時總結(jié),強調(diào)利用運算律進行運算,利用乘法公式簡化運算.讓學生認識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運算律,關于整式運算的公式和方法也適用.
教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應強調(diào),看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題.
4.鞏固概念,學以致用
練習:教科書第7頁練習第1題. 第10頁習題16.2第1題.
【設計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況.
5.歸納小結(jié),反思提高
師生共同回顧本節(jié)課所學內(nèi)容,并請學生回答以下問題:
(1)你能說明二次根式的乘法法則是如何得出的嗎?
(2)你能說明乘法法則逆用的意義嗎?
(3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?
6.布置作業(yè):教科書第7頁第2、3題.習題16.2第1,6題.
五、目標檢測設計
1.下列各式中,一定能成立的是( )
A.二次根式的乘除 B.二次根式的乘除
C.二次根式的乘除 D.二次根式的乘除
【設計意圖】考查二次根式的概念和性質(zhì),這是進行二次根式的乘法運算的基礎.
2.化簡二次根式的乘除 ______________________________。
【設計意圖】二次根式是特殊的實數(shù),實數(shù)的相關運算法則也適用于二次根式.
3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是( )
A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除
【設計意圖】鞏固二次根式的性質(zhì),利用積的算術平方根的性質(zhì)正確化簡二次根式.
二次根式的乘除教學設計 篇4
教學目的
1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;
2.會運用積和商的算術平方根的性質(zhì),把一個二次根式化為最簡二次根式。
教學重點
最簡二次根式的定義。
教學難點
一個二次根式化成最簡二次根式的方法。
教學過程
一、復習引入
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導學生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學生回答:
二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
二、講解新課
1.總結(jié)學生回答的內(nèi)容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的'例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。
2.練習:
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
4.總結(jié)
把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?
當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術平方根代替移到根號外面去。
當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
三、鞏固練習
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
四、小結(jié)
本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術平方根和商的算術平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。
五、布置作業(yè)
下列各式化成最簡二次根式:
二次根式的乘除教學設計 篇5
一、學習目標:
1.多項式除以單項式的運算法則及其應用.
2.多項式除以單項式的運算算理.
二、重點難點:
重點:多項式除以單項式的運算法則及其應用
難點:探索多項式與單項式相除的運算法則的過程
三、合作學習:
(一)回顧單項式除以單項式法則
(二)學生動手,探究新課
1.計算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2.提問:
、僬f說你是怎樣計算的
②還有什么發(fā)現(xiàn)嗎?
(三) 總結(jié)法則
1.多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______
2.本質(zhì):把多項式除以單項式轉(zhuǎn)化成______________
四、精講精練
例:(1)(12a3-6a2+3a)÷3a;
(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x
(4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
隨堂練習:教科書練習
五、小結(jié)
1、單項式的除法法則
2、應用單項式除法法則應注意:
A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運算過程中注意單項式的系數(shù)飽含它前面的符號
B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的`情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);
C、被除式單獨有的字母及其指數(shù),作為商的一個因式,不要遺漏;
D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.
E、多項式除以單項式法則
二次根式的乘除教學設計 篇6
一、學習目標:
1.經(jīng)歷探索平方差公式的過程.
2.會推導平方差公式,并能運用公式進行簡單的運算.
二、重點難點
重點:平方差公式的推導和應用
難點:理解平方差公式的結(jié)構(gòu)特征,靈活應用平方差公式.
三、合作學習
你能用簡便方法計算下列各題嗎?
(1)2001×1999 (2)998×1002
導入新課:計算下列多項式的`積.
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差.
即:(a+b)(a-b)=a2-b2
四、精講精練
例1:運用平方差公式計算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:計算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
二次根式的乘除教學設計 篇7
教學目標
1.使學生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;
2.熟練地進行二次根式的加、減、乘、除混合運算.
教學重點和難點
重點:含二次根式的式子的混合運算.
難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.
教學過程設計
一、復習
1.請同學回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.
指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應用于化簡二次根式.
2.二次根式 的乘法及除法的法則是什么?用式子表示出來.
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,
計算結(jié)果要把分母有理化.
3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關系式:
4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:
二、例題
例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:
分析:
(1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;
(3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;
(4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.
x-2且x0.
解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應注意利用題中的隱含條件3 -a0和1-a>0.
解 因為1-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.
問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?
分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.
注意:
所以在化簡過程中,
例6
分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的`結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、課堂練習
1.選擇題:
A.a(chǎn)2B.a(chǎn)2
C.a(chǎn)2D.a(chǎn)<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空題:
4.計算:
四、小結(jié)
1.本節(jié)課復習的五個基本問題是“二次根式”這一章的主要基礎知識,同學們要深刻理解并牢固掌握.
2.在一次根式的化簡、計算及求值的過程中,應注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.
3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.
4.通過例題的討論,要學會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關多項式的因式分解,解答有關含二次根式的式子的化簡、計算及求值等問題.
五、作業(yè)
1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?
2.把下列各式化成最簡二次根式:
二次根式的乘除教學設計 篇8
一、教學過程
。ㄒ唬⿵土曁釂
1.什么叫二次根式?
2.下列各式是二次根式,求式子中的字母所滿足的條件:
。3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實數(shù).
。ǘ┒胃降暮唵涡再|(zhì)
上節(jié)課我們已經(jīng)學習了二次根式的定義,并了解了第一個簡單性質(zhì)
我們知道,正數(shù)a有兩個平方根,分別記作零的平方根是零。引導學生總結(jié)出,其中,就是一個非負數(shù)a的算術平方根。將符號看作開平方求算術平方根的運算,看作將一個數(shù)進行平方的運算,而開平方運算和平方運算是互為逆運算,因而有:
這里需要注意的是公式成立的條件是a≥0,提問學生,a可以代表一個代數(shù)式嗎?
請分析:引導學生答如時才成立。
時才成立,即a取任意實數(shù)時都成立。
我們知道
如果我們把,同學們想一想是否就可以把任何一個非負數(shù)寫成一個數(shù)的平方形式了.
例1計算:
分析:這個例題中的四個小題,主要是運用公式。其中(2)、(3)、(4)題又運用了整式乘除中學習的積的冪的運算性質(zhì).結(jié)合第(2)小題中的,說明,這與帶分數(shù)。因此,以后遇到,應寫成,而不宜寫成。
例2把下列非負數(shù)寫成一個數(shù)的平方的形式:
。1)5;(2)11;(3)1.6;(4)0.35.
例3把下列各式寫成平方差的形式,再分解因式:
。1)4x2—1;
。2)a4—9;
。3)3a2—10;
。4)a4—6a2+9.
解:(1)4x2—1
=(2x)2—12
=(2x+1)(2x—1).
。2)a4—9
=(a2)2—32
=(a2+3)(a2—3)
。3)3a2—10
。4)a4—6a2+32
=(a2)2—6a2+32
=(a2—3)2
。ㄈ┬〗Y(jié)
1.繼續(xù)鞏固二次根式的定義,及二次根式中被開方數(shù)的取值范圍問題.
2.關于公式的.應用。
(1)經(jīng)常用于乘法的運算中.
。2)可以把任何一個非負數(shù)寫成一個數(shù)的平方的形式,解決在實數(shù)范圍內(nèi)因式分解等方面的問題.
。ㄋ模┚毩暫妥鳂I(yè)
練習:
1.填空
注意第(4)題需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.
2.實數(shù)a、b在數(shù)軸上對應點的位置如下圖所示:
分析:通過本題滲透數(shù)形結(jié)合的思想,進一步鞏固二次根式的定義、性質(zhì),引導學生分析:由于a<0,b>0,且|a|>|b|.
3.計算
二、作業(yè)
教材P.172習題11.1;A組2、3;B組2.
補充作業(yè):
下列各式中的字母滿足什么條件時,才能使該式成為二次根式?
分析:要使這些式成為二次根式,只要被開方式是非負數(shù)即可,啟發(fā)學生分析如下:
。1)由—|a—2b|≥0,得a—2b≤0,
但根據(jù)絕對值的性質(zhì),有|a—2b|≥0,
∴|a—2b|=0,即a—2b=0,得a=2b.
。2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0
∴(m2+1)(m—n)≤0,又m2+1>0,
∴ m—n≤0,即m≤n.
說明:本題求解較難些,但基本方法仍是由二次根式中被開方數(shù)(式)大于或等于零列出不等式.通過本題培養(yǎng)學生對于較復雜的題的分析問題和解決問題的能力,并且進一步鞏固二次根式的概念.
二次根式的乘除教學設計 篇9
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的概念.
2.內(nèi)容解析
本節(jié)課是在學生學習了平方根、算術平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎上,來學習二次根式的概念. 它不僅是對前面所學知識的綜合應用,也為后面學習二次根式的性質(zhì)和四則運算打基礎.
教材先設置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學生對二次根式的定義的理解.
本節(jié)課的教學重點是:了解二次根式的概念;
二、目標和目標解析
1.教學目標
。1)體會研究二次根式是實際的需要.
。2)了解二次根式的概念.
2. 教學目標解析
。1)學生能用二次根式表示實際問題中的數(shù)量和數(shù)量關系,體會研究二次根式的必要性.
。2)學生能根據(jù)算術平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負數(shù)的理由,知道二次根式本身是一個非負數(shù),會求二次根式中被開方數(shù)字母的取值范圍.
三、教學問題診斷分析
對于二次根式的定義,應側(cè)重讓學生理解 “ 的雙重非負性,”即被開方數(shù) ≥0是非負數(shù), 的算術平方根 ≥0也是非負數(shù).教學時注意引導學生回憶在實數(shù)一章所學習的有關平方根的意義和特征,幫助學生理解這一要求,從而讓學生得出二次根式成立的條件,并運用被開方數(shù)是非負數(shù)這一條件進行二次根式有意義的判斷.
本節(jié)課的教學難點為:理解二次根式的雙重非負性.
四、教學過程設計
1.創(chuàng)設情境,提出問題
問題1你能用帶有根號的的式子填空嗎?
(1)面積為3 的'正方形的邊長為_______,面積為S 的正方形的邊長為_______.
。2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.
。3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.
師生活動:學生獨立完成上述問題,用算術平方根表示結(jié)果,教師進行適當引導和評價.
【設計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.
問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?
師生活動:教師引導學生說出各式的意義,概括它們的共同特征:都表示一個非負數(shù)(包括字母或式子表示的非負數(shù))的算術平方根.
【設計意圖】為概括二次根式的概念作鋪墊.
2.抽象概括,形成概念
問題3 你能用一個式子表示一個非負數(shù)的算術平方根嗎?
師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.
【設計意圖】讓學生體會由特殊到一般的過程,培養(yǎng)學生的概括能力.
追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?
師生活動:教師引導學生討論,知道二次根式被開方數(shù)必須是非負數(shù)的理由.
【設計意圖】進一步加深學生對二次根式被開方數(shù)必須是非負數(shù)的理解.
3.辨析概念,應用鞏固
例1 當 時怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義?
師生活動:引導學生從概念出發(fā)進行思考,鞏固學生對二次根式的被開方數(shù)為非負數(shù)的理解.
例2 當 是怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義? 呢?
師生活動:先讓學生獨立思考,再追問.
【設計意圖】在辨析中,加深學生對二次根式被開方數(shù)為非負數(shù)的理解.
問題4 你能比較 與0的大小嗎?
師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導學生得出 ≥0的結(jié)論,強化學生對二次根式本身為非負數(shù)的理解,
【設計意圖】通過這一活動的設計,提高學生對所學知識的遷移能力和應用意識;培養(yǎng)學生分類討論和歸納概括的能力.
4.綜合運用,鞏固提高
練習1 完成教科書第3頁的練習.
練習2 當x 是什么實數(shù)時,下列各式有意義.
。1) ;(2) ;(3) ;(4) .
【設計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.
【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,開闊學生的視野,訓練學生的思維.
5.總結(jié)反思
教師和學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答以下問題.
。1)本節(jié)課你學到了哪一類新的式子?
。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?
(3)二次根式與算術平方根有什么關系?
師生活動:教師引導,學生小結(jié).
【設計意圖】:學生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學習重點,掌握解題方法.
6.布置作業(yè):
教科書習題16.1第1,3,5, 7,10題.
五、目標檢測設計
1. 下列各式中,一定是二次根式的是( )
A. B. C. D.
【設計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負數(shù).
2. 當 時,二次根式 無意義.
【設計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.
3.當 時,二次根式 有最小值,其最小值是 .
【設計意圖】本題主要考查二次根式被開方數(shù)是非負數(shù)的靈活運用.
4.對于 ,小紅根據(jù)被開方數(shù)是非負數(shù),得 出的取值范圍是 ≥ .小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.
【設計意圖】考查二次根式的被開方數(shù)為非負數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.
二次根式的乘除教學設計 篇10
【 學習目標 】
1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應用它解決相關問題。
2、過程與方法:進一步體會分類討論的數(shù)學思想。
3、情感、態(tài)度與價值觀:通過小組合作學習,體驗在合作探索中學習數(shù)學的樂趣。
【 學習重難點 】
1、重點:準確理解二次根式的概念,并能進行簡單的計算。
2、難點:準確理解二次根式的雙重非負性。
【 學習內(nèi)容 】
課本第2— 3頁
【 學習流程 】
一、 課前準備(預習學案見附件1)
學生在家中認真閱讀理解課本中相關內(nèi)容的知識,并根據(jù)自己的理解完成預習學案。
二、 課堂教學
(一)合作學習階段。
教師出示課堂教學目標及引導材料,各學習小組結(jié)合本節(jié)課學習目標,根據(jù)課堂引導材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學習中碰到的問題。組內(nèi)各成員根據(jù)課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。
(二)集體講授階段。(15分鐘左右)
1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的.本組成員可以補充。
2. 教師對合作學習中存在的普遍的不能解決的問題進行集體講解。
3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。
(三)當堂檢測階段
為了及時了解本節(jié)課學生的學習效果,及對本節(jié)課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。
(注:合作學習階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調(diào)整次序或交叉進行)
三、 課后作業(yè)(課后作業(yè)見附件2)
教師發(fā)放根據(jù)本節(jié)課所學內(nèi)容制定的針對性作業(yè),以幫助學生進一步鞏固提高課堂所學。
四、板書設計
課題:二次根式(1)
二次根式概念 例題 例題
二次根式性質(zhì)
反思:
二次根式的乘除教學設計 篇11
一、案例背景:
本節(jié)是九年級上學期數(shù)學的起始課。二次根式的學習,是對代數(shù)式的進一步學習。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內(nèi)字母的取值范圍。為以后的運用二次根式的運算解決實際問題打好基礎。
二、案例描述:
1、學習任務分析:
通過對數(shù)和平方根、算術平方根的復習,鼓勵學生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實際問題的時候,注意轉(zhuǎn)化思想的滲透。體會分析問題、解決問題的方法,積累數(shù)學活動經(jīng)驗。比如求二次根式根號內(nèi)的字母的取值范圍,就是將問題轉(zhuǎn)化為不等式來解決。注意學生數(shù)學書寫格式的規(guī)范,為以后的學習打好基礎。為了使學生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學原則,用復習以前學過的知識導入新課。設計合作學習活動,引導學生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實際問題的過程,真正把學生放到主體位置。
2、學生的認知起點分析:
學生已掌握數(shù)的平方根和算術平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準備。另外,學生對數(shù)的算術平方根的理解作為基礎,經(jīng)歷跟此根式概念的發(fā)生過程,引導學生對二次根式概念的理解。
案例反思:
1.下列代數(shù)式若能作為二次根式的被開方數(shù),則求出字母的取值范圍?若不能,則說明理由。1-2a-2a2-1(2+a)2-(a-5)2
以往對這類問題的回答都是全班回答,有些學生反面信息不能體現(xiàn)出來。采取的措施是全班舉手勢回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現(xiàn)不出的問題。
2.合作活動:
第一位同學——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學;
第二位同學——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學;
第三位同學——批改者:請你用藍筆批改,若有錯誤,請與解題者商議并請其訂正,完成交給你信任的同學用紅筆復;
第四位同學——復查者:請你一定要把好關哦!
出題者姓名:
解題者姓名:
第一個二次根式:
1. 要使式子的值為實數(shù),求x的取值范圍.
2. 寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。
3. 寫出x的一個值,使式子的`值為無理數(shù),并求出這個無理數(shù)。
第二個二次根式:
1. 要使式子的值為實數(shù),求x的取值范圍。
2. 寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。
3. 寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
批改者姓名:
復查者姓名:
《課程標準》突出了學生在學習中的地位 -- 學生是學習的主人,同時,教師的地位、角色發(fā)生了變化,從 “ 主導 ” 變成了 “學生學習活動的組織者、引導者和合作者 ”。合作活動的安排就是對這一課程標準的體現(xiàn)。
二次根式的乘除教學設計 篇12
目 標
1. 熟練地運用二次根式的性質(zhì)化簡二次根式;
2. 會運用二次根式解決簡單的實際問題;
3. 進一步體驗二次根式及其運算的實際意義和應用價值。
教學設想
本節(jié)課的重點是:二次根式及其運算的實際應用;難點是:例7涉及多方面的知識和綜合運用,思路比較復雜。
教 學 程序 與 策 略
一、預習檢測:
1.解決節(jié)前問題:
如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的.頂端離地面的距離AE嗎?
歸納:
在日常生活和生產(chǎn)實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。
二、合作交流:
1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)
讓學生有充分的時間閱讀問題,并結(jié)合圖形分析問題:
(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關系?
。2)列出的算式中有哪些運算?能化簡嗎?
注意解題格式
教 學 程 序 與 策 略
三、鞏固練習:
完成課本P17、1,組長檢查反饋;
四、拓展提高:
1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。
(1)分別求出3張長方形紙條的長度。
。2)若用這些紙條為一幅正方形美術作品鑲邊(紙條不重疊),如右圖,正方形美術作品的面積最大不能超過多少cm。
師生共同分析解題思路,請學生寫出解題過程。
五、課堂小結(jié):
1.談一談:本節(jié)課你有什么收獲?
2.運用二次根式解決簡單的實際問題時應注意的的問題
六、堂堂清
1: 作業(yè)本(2)
2:課本P17頁:第4、5題選做。
二次根式的乘除教學設計 篇13
教學目的:
1、在二次根式的混合運算中,使學生掌握應用有理化分母的方法化簡和計算二次根式;
2、會求二次根式的代數(shù)的值;
3、進一步提高學生的綜合運算能力。
教學重點:
在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式
教學難點:
正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值
教學過程:
一、二次根式的混合運算
例1 計算:
分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。
(2)題是含乘方、加、減和除法的混合運算,應按運算的順序進行計算,先算括號內(nèi)的式子,最后進行除法運算。注意的計算。
練習1:P206 / 8--① P207 / 1①②
例2 計算
問:計算思路是什么?
答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進行計算。
二、求代數(shù)式的值。 注意兩點:
(1)如果已知條件為含二次根式的式子,先把它化簡;
(2)如果代數(shù)式是含二次根式的.式子,應先把代數(shù)式化簡,再求值。
例3 已知,求的值。
分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母。可使計算簡便。
例4 已知,求的值。
觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。
答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。
三、小結(jié)
1、對于二次根式的混合混合運算。應根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內(nèi)的式子的運算,運算結(jié)果要化為最簡二次根式。
2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡,然后再求值。
3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。
四、作業(yè)
P206 / 7 P206 / 8---②③
【二次根式的乘除教學設計】相關文章:
二次根式教學設計12-13
乘除法的意義教學設計(精選12篇)06-09
關于《二次函數(shù)》的復習教學設計(精選10篇)02-07
教學設計模板-教學設計模板08-02
蟬教學設計優(yōu)秀教學設計04-05
ai教學設計 ai的教學設計05-29
流程設計教學設計12-09
《鳥島》教學設計小島教學設計及設計意圖11-11