一元二次方程教學(xué)設(shè)計(jì)(合集15篇)
作為一名教職工,很有必要精心設(shè)計(jì)一份教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以提高教學(xué)效率和教學(xué)質(zhì)量。你知道什么樣的教學(xué)設(shè)計(jì)才能切實(shí)有效地幫助到我們嗎?以下是小編精心整理的一元二次方程教學(xué)設(shè)計(jì),僅供參考,希望能夠幫助到大家。
一元二次方程教學(xué)設(shè)計(jì)1
教學(xué)目標(biāo)
知識(shí)技能:掌握應(yīng)用方程解決實(shí)際問題的方法步驟,提高分析問題、解決問題的能力。
過程與方法:通過探索球積分表中數(shù)量關(guān)系的過程,進(jìn)一步體會(huì)方程是解決實(shí)際問題的數(shù)學(xué)模型,并且明確用方程解決實(shí)際問題時(shí),不僅要注意解方程的過程是否正確,還要檢驗(yàn)方程的解是否符合問題的實(shí)際意義。
情感態(tài)度:鼓勵(lì)學(xué)生自主探究,合作交流,養(yǎng)成自覺反思的良好習(xí)慣。
重點(diǎn):把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,不僅會(huì)列方程求出問題的解,還會(huì)進(jìn)行推理判斷。
難點(diǎn):把數(shù)學(xué)問題轉(zhuǎn)化為數(shù)學(xué)問題。
關(guān)鍵:從積分表中找出等量關(guān)系。
教具:投影儀。
教法:探究、討論、啟發(fā)式教學(xué)。
教學(xué)過程
一、創(chuàng)設(shè)問題情境
用投影儀展示幾張比賽場(chǎng)面及比分(學(xué)習(xí)是生活需要,引起學(xué)生興趣)
二、引入課題
教師用投影儀展示課本106頁中籃球聯(lián)賽積分榜引導(dǎo)學(xué)生觀察,思考:① 用式子表示總積分能與勝、負(fù)場(chǎng)數(shù)之間的數(shù)量關(guān)系;
、谀酬(duì)的勝場(chǎng)總分能等于它的負(fù)場(chǎng)總積分么?
學(xué)生充分思考、合作交流,然后教師引導(dǎo)學(xué)生分析。
師:要解決問題①必須求出勝一場(chǎng)積幾分,負(fù)一場(chǎng)積幾分,你能從積分榜中得到負(fù)一場(chǎng)積幾分么?你選擇哪一行最能說明負(fù)一場(chǎng)積幾分?
生:從最下面一行可以發(fā)現(xiàn),負(fù)一場(chǎng)積1分。
師:勝一場(chǎng)呢?
生:2分(有的用算術(shù)法、有的用方程各抒己見)
師:若一個(gè)隊(duì)勝a場(chǎng),負(fù)多少場(chǎng),又怎樣積分?
生:負(fù)(14-a)場(chǎng),勝場(chǎng)積分2a,負(fù)場(chǎng)積分14-a,總積分a+14.
師:?jiǎn)栴}②如何解決?
學(xué)生通過計(jì)算各隊(duì)勝、負(fù)總分得出結(jié)論:不等。
師:你能用方程說明上述結(jié)論么?
生:老師,沒有等量關(guān)系。
師:欸,就是,已知里沒說,是不是不能用方程解決了?誰又沒有大膽設(shè)想?
生:老師,能不能試著讓它們相等?
師:偉大的發(fā)明都是在嘗試中進(jìn)行的,試試?
生:如果設(shè)一個(gè)隊(duì)勝了x場(chǎng),則負(fù)(14-x)場(chǎng),讓勝場(chǎng)總積分等負(fù)場(chǎng)總積分,方程為:2x=14-x解得x=4/3(學(xué)生掌聲鼓勵(lì))
師:x表示什么?可以是分?jǐn)?shù)么?由此你的出什么結(jié)論?
生:x表示勝得場(chǎng)數(shù),應(yīng)該是一個(gè)整數(shù),所以,x=4/3不符合實(shí)際意義,因此沒有哪個(gè)隊(duì)的勝場(chǎng)總積分等于負(fù)場(chǎng)總積分。
師:此問題說明,利用方程不僅求出具體數(shù)值,而且還可以推理判斷,是否存在某種數(shù)量關(guān)系;還說明用方程解決實(shí)際問題時(shí),不僅要注意方程解得是否正確,還要檢驗(yàn)方程的解是否符合問題的實(shí)際意義。
拓展
如果刪去積分榜的最后一行,你還能用式子表示總積分與勝、負(fù)場(chǎng)數(shù)之間的數(shù)量關(guān)系嗎?
師:我們可以從積分榜中積分不相同的`兩行數(shù)據(jù)求的勝負(fù)一場(chǎng)各得幾分,如:一、三行。
教師引導(dǎo)學(xué)生設(shè)未知數(shù),列方程。學(xué)生試說。
生:設(shè)勝一場(chǎng)積x分,則前進(jìn)隊(duì)勝場(chǎng)積分10x,負(fù)場(chǎng)積分(24-10x)分,它負(fù)了4場(chǎng),所以負(fù)一場(chǎng)積分為(24-10x)/4,同理從第三行得到負(fù)一場(chǎng)積分為(23-9x)/5,從而列方程為(24-10x)/4=(23-9x)/5。解得x=2,當(dāng)x=2時(shí),(24-10x)/4=1。仍然可得負(fù)一場(chǎng)積1分,勝一場(chǎng)積2分。
三、鞏固練習(xí)
已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見表:
海拔高度(單位:m)
100
200
300
400
平均氣溫(單位:℃)
22
21.5
21
20.5
20
若某種植物適宜生長(zhǎng)在18℃20℃(包括18℃20℃)的山區(qū),請(qǐng)問該植物適宜種在海拔為多少米的山區(qū)?
學(xué)生分析題意,思考,在練習(xí)本上完成,然后同桌小議,代表發(fā)言,教師點(diǎn)撥。
四、課堂小結(jié):
讓幾個(gè)學(xué)生談自己的收獲,再讓一個(gè)學(xué)生全面總結(jié)。
五、布置作業(yè):
課本108頁8、9題。
六、教學(xué)反思
本節(jié)課主要是借球賽積分表問題傳授數(shù)學(xué)知識(shí)的應(yīng)用。在前面已經(jīng)討論過由實(shí)際問題抽象出一元一次方程模型和解一元一次方程的基礎(chǔ)上,本節(jié)進(jìn)一步以探究的形式討論如何用一元一次方程解決實(shí)際問題。要探究的問題比前幾節(jié)的問題復(fù)雜些,問題情境與實(shí)際情況更接近。本節(jié)的重點(diǎn)是建立實(shí)際問題的方程模型。通過探究活動(dòng),進(jìn)一步體驗(yàn)一元一次方程與實(shí)際的密切聯(lián)系,加強(qiáng)數(shù)學(xué)建模思想,培養(yǎng)運(yùn)用一元一次方程分析和解決問題的能力。
由于本節(jié)問題的背景和表達(dá)都比較貼近實(shí)際,其中的有些數(shù)量關(guān)系比較隱蔽,所以在探究過程中正確建立方程是難點(diǎn),教師要恰當(dāng)?shù)囊龑?dǎo),讓學(xué)生弄清問題背景,分析清楚有關(guān)數(shù)量關(guān)系,找出可作為方程依據(jù)的主要相等關(guān)系,但教師不要代替學(xué)生的思考。
一元二次方程教學(xué)設(shè)計(jì)2
一、學(xué)生知識(shí)狀況分析
學(xué)生已經(jīng)學(xué)習(xí)了一元二次方程及其解法,對(duì)于方程的解及解方程并不陌生,實(shí)際問題的應(yīng)用,有些抽象,雖然學(xué)生在七、八年級(jí)已經(jīng)進(jìn)行了有關(guān)的訓(xùn)練,但還是有一定的難度。
本節(jié)內(nèi)容針對(duì)的學(xué)生是才進(jìn)入九年級(jí)的學(xué)生,他們已經(jīng)具備了一定的抽象思維和建模能力,也具備一定的生活經(jīng)驗(yàn)和初步的解一元二次方程的經(jīng)驗(yàn)。
二、教學(xué)任務(wù)分析
本節(jié)課的主要是發(fā)展學(xué)生抽象思維,強(qiáng)化學(xué)生的應(yīng)用意識(shí),使學(xué)生能通過抽象思維將一個(gè)應(yīng)用題抽象成一元二次方程使問題得以解決,這也是方程教學(xué)的重要任務(wù)。但學(xué)生抽象意識(shí)和能力的發(fā)展不是自發(fā)的,需要通過大量的應(yīng)用實(shí)例,在實(shí)際問題的解決中讓學(xué)生感受到其廣泛應(yīng)用,并在具體應(yīng)用中增強(qiáng)學(xué)生的應(yīng)用能力。因此,本節(jié)教學(xué)中需要選用大量的實(shí)際問題,通過列方程解決問題,并且在問題解決過程中,促進(jìn)學(xué)生分析問題、解決問題意識(shí)和能力的提高以及抽象思維的初步形成。顯然,這個(gè)任務(wù)并非某個(gè)教學(xué)活動(dòng)所能達(dá)成的,而應(yīng)在教學(xué)活動(dòng)中創(chuàng)設(shè)大量的問題解決的情境,在具體情境中發(fā)展學(xué)生的有關(guān)能力。為此,本節(jié)課的教學(xué)目標(biāo)是:
知識(shí)目標(biāo):
通過分析問題中的數(shù)量關(guān)系,抽象出方程解決問題,認(rèn)識(shí)方程模型的重要性,并總結(jié)運(yùn)用方程解決實(shí)際問題的一般過程。
能力目標(biāo):
1、經(jīng)歷分析,抽象和建模的過程,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效的數(shù)學(xué)模型;
2、能夠抽象出一元二次方程解決有關(guān)實(shí)際問題,能根據(jù)具體問題的實(shí)際意義檢驗(yàn)結(jié)果的合理性,進(jìn)一步培養(yǎng)學(xué)生分析問題、解決問題的意識(shí)和能力;
情感態(tài)度價(jià)值觀:
在問題解決中,經(jīng)歷一定的合作交流活動(dòng),進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)和能力。
三、學(xué)法指導(dǎo)
本課是學(xué)生學(xué)習(xí)完一元二次方程的解法后的應(yīng)用課,雖然學(xué)生在七八年級(jí)已經(jīng)進(jìn)行了一定的訓(xùn)練,但本課對(duì)學(xué)生而言還是有一定的難度。本課采用啟發(fā)式、問題串討論式、合作學(xué)習(xí)相結(jié)合的方式,引導(dǎo)學(xué)生從已有的知識(shí)和生活經(jīng)驗(yàn)出發(fā),以教材提供的素材為基礎(chǔ),引導(dǎo)學(xué)生對(duì)對(duì)問題中的數(shù)量進(jìn)行分析從而抽象出方程解決問題;學(xué)生之間的合作交流、互助學(xué)習(xí),能更好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,更符合學(xué)生的認(rèn)知規(guī)律。無論是例題的分析還是練習(xí)的分析,盡可能地鼓勵(lì)學(xué)生動(dòng)腦、動(dòng)手、動(dòng)口,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過程中發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨(dú)到見解以及思維的誤區(qū),更好地進(jìn)行學(xué)法指導(dǎo)。
四、教學(xué)過程分析
本課時(shí)分為以下五個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):回憶鞏固,情境導(dǎo)入;第二環(huán)節(jié):做一做,探索新知;第三環(huán)節(jié):練一練,鞏固新知;第四環(huán)節(jié):收獲與感悟;第五環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié);情境導(dǎo)入
活動(dòng)內(nèi)容:提出問題:還記得梯子下滑的問題嗎?
在這個(gè)問題中,梯子頂端下滑1米時(shí),梯子底端滑動(dòng)的距離大于1米,那么梯子頂端下滑幾米時(shí),梯子底端滑動(dòng)的距離和它相等呢?如果梯子長(zhǎng)度是13米,梯子頂端下滑的距離與梯子底端滑動(dòng)的'距離可能相等嗎?如果相等,那么這個(gè)距離是多少?
分組討論:
怎么設(shè)未知數(shù)?在這個(gè)問題中存在怎樣的等量關(guān)系?如何利用勾股定理抽象出方程?
活動(dòng)目的:以學(xué)生所熟悉的梯子下滑問題為素材,以前面所學(xué)的勾股定理為切入點(diǎn),用熟悉的情境激發(fā)學(xué)生解決問題的欲望,用學(xué)生已有的知識(shí)為支點(diǎn)抽象出一元二次方程使問題得以解決,進(jìn)一步讓學(xué)生體會(huì)數(shù)形結(jié)合的思想。
活動(dòng)的實(shí)際效果:大部分學(xué)生能夠聯(lián)系以前學(xué)過的勾股定理的三邊關(guān)系抽象出方程對(duì)上述問題進(jìn)行思考,能夠在老師的引導(dǎo)下主動(dòng)地探究問題,取得了比較理想的效果,而且也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)熱情,激發(fā)了學(xué)生的思維,為后面的探索奠定了良好的基礎(chǔ)。
第二環(huán)節(jié)探索新知
活動(dòng)內(nèi)容:見課本P53頁例1:
如圖:某海軍基地位于A處,在其正南方向200海里處有一重要目標(biāo)B,在B的正東方向200海里處有一重要目標(biāo)C,小島D位于AC的中點(diǎn),島上有一補(bǔ)給碼頭。小島F位于BC中點(diǎn)。一艘軍艦從A出發(fā),經(jīng)B到C勻速巡航,一艘補(bǔ)給船同時(shí)從D出發(fā),沿南偏西方向勻速直線航行,欲將一批物品送達(dá)軍艦。
已知軍艦的速度是補(bǔ)給船的2倍,軍艦在由B到C的途中與補(bǔ)給船相遇,那么相遇時(shí)補(bǔ)給船航行了多少海里?(結(jié)果精確到0.1海里)
在教學(xué)中要給學(xué)生充分的時(shí)間去審清題意,分析各量之間的關(guān)系,不能粗線條解決。在講解過程中可逐步分解難點(diǎn):審清題意;找準(zhǔn)各條有關(guān)線段的長(zhǎng)度關(guān)系;通過抽象思維建立方程模型,之后求解。
實(shí)際應(yīng)用問題比較抽象,因此教學(xué)中老師要給學(xué)生充分的時(shí)間去審清題意,讓學(xué)生自己反復(fù)審題,弄清各量之間的關(guān)系,分析題目中的已知條件和要求解的問題,并在這個(gè)前提下抽象出圖形中各條線段所表示的量,弄清它們之間的關(guān)系,從而抽象出方程模型解決問題。
在學(xué)生分析題意遇到困難時(shí),教學(xué)中可設(shè)置問題串分解難點(diǎn):
(1)要求DE的長(zhǎng),需要如何設(shè)未知數(shù)?
。2)怎樣建立含DE未知數(shù)的等量關(guān)系?從已知條件中能找到嗎?
。3)利用勾股定理建立等量關(guān)系,如何構(gòu)造直角三角形?
(4)選定后,三條邊長(zhǎng)都是已知的嗎?DE,DF,EF分別是多少?
學(xué)生在問題串的引導(dǎo)下,逐層分析,在分組討論后抽象出題目中的等量關(guān)系即:
速度等量:V軍艦=2×V補(bǔ)給船
時(shí)間等量:t軍艦=t補(bǔ)給船
三邊數(shù)量關(guān)系:
弄清圖形中線段長(zhǎng)表示的量:已知AB=BC=200海里,DE表示補(bǔ)給船的路程,AB+BE表示軍艦的路程。
學(xué)生在此基礎(chǔ)上選準(zhǔn)未知數(shù),用未知數(shù)表示出線段:DE、EF的長(zhǎng),根據(jù)勾股定理抽象出方程求解,并判斷解的合理性。
鞏固練習(xí):1、一個(gè)直角三角形的斜邊長(zhǎng)為7cm,一條直角邊比另一條直角邊長(zhǎng)1cm,那么這個(gè)直角三角的面積是多少?
文本框:8cm2、如圖:在RtACB中,∠C=90°,點(diǎn)P、Q同時(shí)由A、B兩點(diǎn)出發(fā)分別沿AC、BC方向向點(diǎn)C勻速移動(dòng),它們的速度都是1m/s,幾秒后PCQ的面積為RtACB面積的一半?
3、在寬為20m,長(zhǎng)為32m的矩形耕地上,修筑同樣寬的三條道路(兩條縱向,一條橫向,橫向與縱向互相垂直),把耕地分成大小相等的六塊作試驗(yàn)田,要使試驗(yàn)田面積為570平方米,問道路應(yīng)為多寬?
說明:三個(gè)題目的設(shè)計(jì)從簡(jiǎn)單問題入手,第一題通過勾股定理抽象出一元二次方程解決直角三角形邊長(zhǎng)問題;第2題構(gòu)造了一個(gè)可變的直角三角形,抽象出方程解決面積問題;第三題也是面積問題,在這個(gè)問題中常設(shè)道路寬為x米,通過平移道路使六塊田地變成一塊田地,從而根據(jù)矩形面積公式抽象出方程解決問題。
活動(dòng)目的:一元二次方程的應(yīng)用題的類型較多,像數(shù)字問題、面積問題、平均增長(zhǎng)(或降低)率問題、利潤(rùn)問題等;本節(jié)課以教材上的引例作為出發(fā)點(diǎn),作為素材來呈現(xiàn),可以將應(yīng)用類型作適當(dāng)?shù)耐卣,在練?xí)中將教材中的應(yīng)用問題歸類呈現(xiàn)出來,便于學(xué)生理解和掌握。本課由數(shù)形結(jié)合問題拓展到面積問題,后面可以在練習(xí)中增加數(shù)字問題,為學(xué)生呈現(xiàn)更多的應(yīng)用類型,讓學(xué)生在不同的情境中體會(huì)數(shù)學(xué)抽象和建模的重要性。
活動(dòng)實(shí)際效果:應(yīng)用問題設(shè)置都經(jīng)過精心準(zhǔn)備。通過問題串的設(shè)立,將比較復(fù)雜、難以理解的題目分成多個(gè)小的題目去理解,使學(xué)生在不知不覺中克服困難,體會(huì)到通過抽象出方程解應(yīng)用題的三個(gè)重要環(huán)節(jié):整體系統(tǒng)的審清題意;尋找等量關(guān)系;正確求解并檢驗(yàn)解的合理性。采取的是一講一練,從鞏固練習(xí)的準(zhǔn)確程度上來看,學(xué)生掌握得比較好,能夠達(dá)到預(yù)期的效果。
第三環(huán)節(jié):練一練,鞏固新知
活動(dòng)內(nèi)容:1、在一塊正方形的鋼板上裁下寬為20cm的一個(gè)長(zhǎng)條,剩下的長(zhǎng)方形鋼板的面積為4800cm2。求原正方形鋼板的面積。
2、有這樣一道阿拉伯古算題:有兩筆錢,一多一少,其和等于20,積等于96,多的一筆錢被許諾賞給賽義德,那么賽義德得到多少錢?
3、《九章算術(shù)》“勾股”章有一題:甲、乙二人同時(shí)從同一地點(diǎn)出發(fā),甲的速度為7,乙的速度為3。乙一直向東走,甲先向南走了10步,后又斜向北偏東方向走了一段后與乙相遇。那么相遇時(shí),甲、乙各走了多遠(yuǎn)?
活動(dòng)目的:通過三道問題的解決,查缺補(bǔ)漏,了解學(xué)生的掌握情況和靈活運(yùn)用知識(shí)的程度。在教學(xué)過程中要以學(xué)生為主體,引導(dǎo)學(xué)生自主發(fā)現(xiàn)、合作交流;顒(dòng)實(shí)際效果:學(xué)生在前面活動(dòng)中積累的經(jīng)驗(yàn),可以幫助學(xué)生比較順利地分析上述問題,遇有疑難可以讓學(xué)生在合作交流中解決,學(xué)生在訓(xùn)練過程中更加理解數(shù)學(xué)抽象和建模的重要性.大部分學(xué)生能夠獨(dú)立解決問題。
第四環(huán)節(jié):收獲與感悟
活動(dòng)內(nèi)容:提問:
1、列方程解應(yīng)用題的關(guān)鍵;2、列方程解應(yīng)用題的步驟;3、列方程應(yīng)注意的一些問題。
學(xué)生在學(xué)習(xí)小組中回顧與反思,并進(jìn)行組間交流發(fā)言。
活動(dòng)目的:鼓勵(lì)學(xué)生回顧本節(jié)課知識(shí)方面有哪些收獲,解題技能方面有哪些提高,還有什么疑難問題希望得到解決;通過對(duì)三個(gè)問題的解決,加深學(xué)生通過抽象思維抽象出方程解決實(shí)際問題的意識(shí)和能力;并且通過學(xué)生間的合作學(xué)習(xí)幫助不同層次的孩子解決實(shí)際困難,增強(qiáng)孩子學(xué)好數(shù)學(xué)的信心。
活動(dòng)實(shí)際效果:學(xué)生通過回顧本節(jié)課的學(xué)習(xí)過程,體會(huì)利用抽象思維抽象出一元二次方程解決實(shí)際問題的方法和技巧,進(jìn)一步提高自己解決問題的能力。
第五環(huán)節(jié):布置作業(yè)
1、甲乙兩個(gè)小朋友的年齡相差4歲,兩個(gè)人的年齡相乘積等于45,你知道這兩個(gè)小朋友幾歲嗎?
2、一塊長(zhǎng)方形草地的長(zhǎng)和寬分別為20m和15m,在它四周外圍環(huán)繞著寬度相等的小路,已知小路的面積為246,求小路的寬度。
3、一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)比個(gè)位數(shù)小2,求這兩位數(shù)。
一元二次方程教學(xué)設(shè)計(jì)3
課型:新授課
學(xué)習(xí)目標(biāo):
1.能根據(jù)具體問題中的數(shù)量關(guān)系列出一元二次方程并利用它解決具體問題.
2.學(xué)會(huì)運(yùn)用數(shù)學(xué)知識(shí)分析解決實(shí)際問題,體會(huì)數(shù)學(xué)的價(jià)值。
重點(diǎn):列一元二次方程解應(yīng)用題
難點(diǎn):學(xué)會(huì)分析問題中的等量關(guān)系
一、知識(shí)回顧
列方程解應(yīng)用題的一般步驟是①②③④⑤⑥
二、自學(xué)教材、合作探究
1、自學(xué)教材45頁,學(xué)習(xí)分析“探究一”中的數(shù)量關(guān)系
設(shè)每輪傳染中平均一個(gè)人傳染了x個(gè)人。開始有一人患了流感,第一輪的傳染源就是這個(gè)人,他傳染了x個(gè)人,那么,用代數(shù)式表示,第一輪后共有( )人患了流感;第二輪傳染中,這些人中的每個(gè)人又傳染了x個(gè)人,用代數(shù)式表示,第二輪后共有( )人患了流感。則可列方程為:
2、解這個(gè)方程,得
3、想一想:三輪傳染后有多少人患流感?四輪呢?
三、檢查自學(xué)效果
1.(xxxx年畢節(jié)地區(qū))有一人患了流感,經(jīng)過兩輪傳染后共有100人患了流感,那么每輪傳染中,平均一個(gè)人傳染的人數(shù)為( )
A.8人B.9人C.10人D.11人
2.生物興趣小組的學(xué)生,將自己收集的`標(biāo)本向本組其他成員各贈(zèng)送一件;全組共互贈(zèng)了182件.如果全組有x名學(xué)生,則根據(jù)題意列出的方程是( )
A. B. C. D.
四、指導(dǎo)學(xué)生應(yīng)用
某種電腦病毒傳播非?,如果一臺(tái)電腦被感染,經(jīng)過兩輪感染后就會(huì)有81臺(tái)電腦被感染.請(qǐng)你用學(xué)過的知識(shí)分析,每輪感染中平均一臺(tái)電腦會(huì)感染幾臺(tái)電腦?若病毒得不到有效控制,3輪感染后,被感染的電腦會(huì)不會(huì)超過700臺(tái)?(xxxx廣東中考9分)
解:設(shè)每輪感染中平均每一臺(tái)電腦會(huì)感染臺(tái)電腦,1分
4分
解之得6分
8分
答:每輪平均每一臺(tái)電腦會(huì)感染臺(tái)電腦,3輪感染后,被感染的電腦超過700臺(tái)。
五、鞏固訓(xùn)練:
1.一個(gè)多邊形的對(duì)角線有9條,則這個(gè)多邊形的邊數(shù)是( ).
A.6 B.7 C.8 D.9
2.元旦期間,一個(gè)小組有若干人,新年互送賀卡一張,已知全組共送賀卡132張,則這個(gè)小組共有( )人
A.11 B.12 C.13 D.14
3.九年級(jí)(3)班文學(xué)小組在舉行的圖書共享儀式上互贈(zèng)圖書,每個(gè)同學(xué)都把自己的圖書向本組其他成員贈(zèng)送一本,全組共互贈(zèng)了240本圖書,如果設(shè)全組共有x名同學(xué),依題意,可列出的方程是( )
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.參加中秋晚會(huì)的每?jī)蓚(gè)人都握了一次手,所有人共握手10次,則有( )人參加聚會(huì)。
5.學(xué)校組織了一次籃球單循環(huán)比賽,共進(jìn)行了15場(chǎng)比賽,那么有個(gè)球隊(duì)參加了這次比賽。
6.甲型H1N1流感病毒的傳染性極強(qiáng),某地因1人患了甲型H1N1流感沒有及時(shí)隔離治療,經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個(gè)人傳染了幾個(gè)人?如果按照這個(gè)傳染速度,再經(jīng)過5天的傳染后,這個(gè)地區(qū)一共將會(huì)有多少人患甲型H1N1流感?
反思:2題和4題列方程時(shí)為何不一樣呢?
六、歸納小結(jié):
1.本節(jié)課我們學(xué)習(xí)了列一元一次方程解應(yīng)用題,要注意解題步驟,特別地,要檢驗(yàn)解的結(jié)果是否正確與符合題意,并注意題型的積累。
2.(方法歸納)解應(yīng)用題地步驟是:審、設(shè)、列、解、檢、答,關(guān)鍵是尋找等量關(guān)系,可以采用列式法,線段圖示法,列表法等來幫助尋找,并注重檢驗(yàn)。
七、效果測(cè)評(píng):
1.解下列方程。(1)+10x+21=0(2)-x=1
2.兩個(gè)相鄰的偶數(shù)的積是240,求這兩個(gè)偶數(shù)。
3.參加一次足球聯(lián)賽的每?jī)蓚(gè)隊(duì)之間都進(jìn)行兩場(chǎng)比賽,共要比賽90場(chǎng),共有多少個(gè)隊(duì)參加比賽?
一元二次方程教學(xué)設(shè)計(jì)4
課題名稱
一元二次方程
科目
數(shù)學(xué)
年級(jí)
九年級(jí)
教學(xué)時(shí)間
一課時(shí)
學(xué)習(xí)者分析
學(xué)生的學(xué)習(xí)思維、解決問題等能力的高低叁差不齊。從學(xué)生現(xiàn)有的情況來看,多數(shù)同學(xué)對(duì)列方程解應(yīng)用題感覺較難掌握,面對(duì)題意無法找出等量關(guān)系。另外,很多學(xué)生的計(jì)算能力也不強(qiáng)。因此,在教學(xué)中主要以較為簡(jiǎn)單的基礎(chǔ)題為授課主線,其中參入少數(shù)中檔題供一些學(xué)有余力的學(xué)生思考。
教學(xué)目標(biāo)
一、情感態(tài)度與價(jià)值觀
1、培養(yǎng)學(xué)生主動(dòng)探索、敢于實(shí)勇于發(fā)現(xiàn)、合作交流的精神。
二、過程與方法
1、經(jīng)歷抽象一元二次方程的過程,使學(xué)生體會(huì)出方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型
2、經(jīng)歷探索滿足方程解的過程,發(fā)展估算的意識(shí)和能力。
三、知識(shí)與技能
1、充分了解一元二次方程的概念
2、正確掌握一元二次方程的一般形式。
教學(xué)重點(diǎn)、難點(diǎn)
1、一元二次方程的概念及一般形式。
2、由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程。
3、正確識(shí)別一般式中的“項(xiàng)”及“系數(shù)”。
教學(xué)資源
多媒體課件
教學(xué)過程
教學(xué)活動(dòng)1
一、創(chuàng)設(shè)情境,導(dǎo)入新課
問題1:
2008年奧運(yùn)會(huì)將在北京舉辦,許多大學(xué)生都希望為奧運(yùn)奉獻(xiàn)自己的一份力量,F(xiàn)組委會(huì)決定對(duì)高校奧運(yùn)志愿者進(jìn)行分批培訓(xùn),由已合格人員培訓(xùn)第一輪人員,再由前面所有合格人員培訓(xùn)第二輪人員,以此類推來完成此次培訓(xùn)任務(wù)。某高校學(xué)生李紅已受訓(xùn)合格,成為一名志愿者,并由她負(fù)責(zé)培訓(xùn)本校志愿者。若每輪培訓(xùn)中每個(gè)志愿者平均培訓(xùn)x人。
。1)已知經(jīng)過第一輪培訓(xùn)后該校共有11人合格,請(qǐng)列出滿足條件的方程:
。2)若兩輪培訓(xùn)后該校共有121人合格,你能列出滿足條件的方程嗎?
問題2:
有一塊矩形鐵皮,長(zhǎng)100cm,寬50cm,在它的四角各切去一個(gè)正方形,然后將四周突出部分折起,就能制作一個(gè)無蓋方盒。如果要制作的無蓋方盒底面積為3600cm2,那么鐵皮各角應(yīng)切去多大的正方形?
問題3:
我校為豐富校園文化氛圍,要設(shè)計(jì)一座2米高的人體雕像,使雕像的上部(腰以上)與全部高度的乘積,等于下部(腰以下)高度的平方,求雕像下部的高度?
教學(xué)活動(dòng)2
二、探究新知,嘗試練習(xí)
由以上問題得到2個(gè)方程,學(xué)生觀察歸納這2個(gè)方程的特征,給出名稱并類比一元一次方程的定義,得出一元二次方程的定義。
歸納:
1、一元二次方程的概念:等號(hào)兩邊都是整式,只含有一個(gè)未知數(shù),并且未知數(shù)的'最高次數(shù)是2的方程,叫做一元二次方程。
強(qiáng)調(diào)定義中體現(xiàn)的3個(gè)特征:
、僬;②一元;③2次
練習(xí)1:判斷下列各式是否為一元二次方程:
(1)4x2=81(2)2(x2_1)=3y(3)5x2_1=4x(4)x2+3x_c=0(5)3x(x+1)=5(x+2)
引導(dǎo)學(xué)生類比一元一次方程的一般形式,總結(jié)歸納一元二次方程的一般形式及項(xiàng)、系數(shù)的概念
2、一元二次方程的一般形式為:ax2+bx+c=0(a≠0),其中ax2為二次項(xiàng),a為二次項(xiàng)系數(shù);bx為一次項(xiàng),b為一次項(xiàng)系數(shù);c為常數(shù)項(xiàng)。
提問:說出下列方程的一次項(xiàng)系數(shù)、二次項(xiàng)系數(shù)和常數(shù)項(xiàng)
x2+2x—1=0x2—36x+35=0
練習(xí)2:說出下列一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):(由學(xué)生以搶答的形式來完成此題,并讓學(xué)生找出錯(cuò)誤理由。)
(1)x2十3x十2=O(2)x2_3x十4=0;
。3)3x2—5=0(4)4x2十3x_2=0;
。5)3x2_5=0;(6)6x2_x=0。
整理一般形式后,教師應(yīng)強(qiáng)調(diào)整理過程中應(yīng)用到的等式變形方法,如去括號(hào),移項(xiàng),合并同類項(xiàng),去分母。
教學(xué)活動(dòng)3
三、合作學(xué)習(xí),鞏固提高
1、把下列方程先化成二元二次方程的一般形式,再寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)
。1)2(x2-1)= 3 x
。2)3(x-3)2=(x+2)2+7
。3)3x(x—1)=2(x十2)
2、我校為樹立學(xué)生的團(tuán)結(jié)、拼搏精神,組織了一次籃球比賽,參賽的每?jī)蓚(gè)隊(duì)之間都要比賽一場(chǎng),依據(jù)場(chǎng)地和時(shí)間等條件,賽程計(jì)劃安排7天,每天安排4場(chǎng)比賽,請(qǐng)問全校有多少個(gè)隊(duì)參賽?(列方程并整理成一般形式)
教學(xué)活動(dòng)4
四、歸納小結(jié),布置作業(yè)
本節(jié)課你學(xué)會(huì)哪些新知識(shí)?
學(xué)生交流、討論,談?wù)勛约旱氖斋@或感悟。
一元二次方程教學(xué)設(shè)計(jì)5
教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.
2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))交點(diǎn)的橫坐標(biāo).
(二)能力訓(xùn)練要求
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
2.通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.
3.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí).
(三)情感與價(jià)值觀要求
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.
2.具有初步的創(chuàng)新精神和實(shí)踐能力.
教學(xué)重點(diǎn)
1.體會(huì)方程與函數(shù)之間的聯(lián)系.
2.理解何時(shí)方程有兩個(gè)不等的實(shí)根,兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.
3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))交點(diǎn)的橫坐標(biāo).
教學(xué)難點(diǎn)
1.探索方程與函數(shù)之間的聯(lián)系的過程.
2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系.
教學(xué)方法
討論探索法.
教具準(zhǔn)備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學(xué)過程
、.創(chuàng)設(shè)問題情境,引入新課
[師]我們學(xué)習(xí)了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關(guān)系.當(dāng)一次函數(shù)中的函數(shù)值y=0時(shí),一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b=0的解.
現(xiàn)在我們學(xué)習(xí)了一元二次方程ax2+bx+c=0(a≠0)和二次函數(shù)y=ax2+bx+c(a≠0),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題.
、.講授新課
一、例題講解
投影片:(§2.8.1A)
我們已經(jīng)知道,豎直上拋物體的高度h(m)與運(yùn)動(dòng)時(shí)間t(s)的關(guān)系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是拋出時(shí)的高度,v0(m/s)是拋出時(shí)的速度.一個(gè)小球從地面被以40m/s的速度豎直向上拋起,小球的高度h(m)與運(yùn)動(dòng)時(shí)間t(s)的關(guān)系如下圖所示,那么
(1)h與t的關(guān)系式是什么?
(2)小球經(jīng)過多少秒后落地?你有幾種求解方法?與同伴進(jìn)行交流.
[師]請(qǐng)大家先發(fā)表自己的看法,然后再解答.
[生](1)h與t的關(guān)系式為h=-5t2+v0t+h0,其中的v0為40m/s,小球從地面被拋起,所以h0=0.把v0,h0代入上式即可求出h與t的關(guān)系式.
(2)小球落地時(shí)h為0,所以只要令h=-5t2+v0t+h.中的h為0,求出t即可.
還可以觀察圖象得到.
[師]很好.能寫出步驟嗎?
[生]解:(1)∵h(yuǎn)=-5t2+v0t+h0,
當(dāng)v0=40,h0=0時(shí),
h=-5t2+40t.
(2)從圖象上看可知t=8時(shí),小球落地或者令h=0,得:
-5t2+40t=0,
即t2-8t=0.
∴t(t-8)=0.
∴t=0或t=8.
t=0時(shí)是小球沒拋時(shí)的時(shí)間,t=8是小球落地時(shí)的時(shí)間.
二、議一議
投影片:(§2.8.1B)
二次函數(shù)①y=x2+2x,
、趛=x2-2x+1,
、踶=x2-2x+2的圖象如下圖所示.
(1)每個(gè)圖象與x軸有幾個(gè)交點(diǎn)?
(2)一元二次方程x2+2x=0,x2-2x+1=0有幾個(gè)根?解方程驗(yàn)證一下:一元二次方程x2-2x+2=0有根嗎?
(3)二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
[師]還請(qǐng)大家先討論后解答.
[生](1)二次函數(shù)y=x2+2x,y=x2-2x+1,y=x2-2x+2的圖象與x軸分別有兩個(gè)交點(diǎn),一個(gè)交點(diǎn),沒有交點(diǎn).
(2)一元二次方程x2+2x=0有兩個(gè)根0,-2;方程x2-2x+1=0有兩個(gè)相等的根1或一個(gè)根1;方程x2-2x+2=0沒有實(shí)數(shù)根.
(3)從觀察圖象和討論中可知,二次函數(shù)y=x2+2x的圖象與x軸有兩個(gè)交點(diǎn),交點(diǎn)的坐標(biāo)分別為(0,0),(-2,0),方程x2+2x=0有兩個(gè)根0,-2;
二次函數(shù)y=x2-2x+1的圖象與x軸有一個(gè)交點(diǎn),交點(diǎn)坐標(biāo)為(1,0),方程x2-2x+1=0有兩個(gè)相等的.實(shí)數(shù)根(或一個(gè)根)1;二次函數(shù)y=x2-2x+2的圖象與x軸沒有交點(diǎn),方程x2-2x+2=0沒有實(shí)數(shù)根.
由此可知,二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)的橫坐標(biāo)即為一元二次方程ax2+bx+c=0的根.
[師]大家總結(jié)得非常棒.
二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)有三種情況:有兩個(gè)交點(diǎn)、有一個(gè)交點(diǎn)、沒有交點(diǎn).當(dāng)二次函數(shù)y=ax2+bx+c的圖象與x軸有交點(diǎn)時(shí),交點(diǎn)的橫坐標(biāo)就是當(dāng)y=0時(shí)自變量x的值,即一元二次方程ax2+bx+c=0的根.
三、想一想
在本節(jié)一開始的小球上拋問題中,何時(shí)小球離地面的高度是60m?你是如何知道的?
[師]請(qǐng)大家討論解決.
[生]在式子h=-5t2+v0t+h0中,當(dāng)h0=0,v0=40m/s,h=60m時(shí),有
-5t2+40t=60,
t2-8t+12=0,
∴t=2或t=6.
因此當(dāng)小球離開地面2秒和6秒時(shí),高度都是60m.
、.課堂練習(xí)
隨堂練習(xí)(P67)
Ⅳ.課時(shí)小結(jié)
本節(jié)課學(xué)了如下內(nèi)容:
1.經(jīng)歷了探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)了方程與函數(shù)之間的聯(lián)系.
2.理解了二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解了何時(shí)方程有兩個(gè)不等的實(shí)根.兩個(gè)相等的實(shí)根和沒有實(shí)根.
、.課后作業(yè)
習(xí)題2.9
板書設(shè)計(jì)
§2.8.1 二次函數(shù)與一元二次方程(一)
一、1.例題講解(投影片§2.8.1A)
2.議一議(投影片§2.8.1B)
3.想一想
二、課堂練習(xí)
隨堂練習(xí)
三、課時(shí)小結(jié)
四、課后作業(yè)
備課資料
思考、探索、交流
把4根長(zhǎng)度均為100m的鐵絲分別圍成正方形、長(zhǎng)方形、正三角形和圓,哪個(gè)的面積最大?為什么?
解:(1)設(shè)長(zhǎng)方形的一邊長(zhǎng)為x m,另一邊長(zhǎng)為(50-x)m,則
S長(zhǎng)方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.
即當(dāng)x=25時(shí),S最大=625.
(2)S正方形=252=625.
(3)∵正三角形的邊長(zhǎng)為 m,高為 m,
∴S三角形= =≈481(m2).
(4)∵2πr=100,∴r= .
∴S圓=πr2=π·( )2=π· = ≈796(m2).
所以圓的面積最大.
一元二次方程教學(xué)設(shè)計(jì)6
學(xué)情分析
學(xué)生在七年級(jí)和八年級(jí)已經(jīng)學(xué)習(xí)了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基礎(chǔ)上本節(jié)課將從實(shí)際問題入手,抽象出一元二次方程的概念及一元二次方程的一般形式。
教學(xué)目標(biāo):
知識(shí)技能
1、理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
過程與方法
1、通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題及解決問題的能力.
2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對(duì)概念理解的完整性和深刻性.
情感態(tài)度
1、培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、自主學(xué)習(xí)和合作交流的意識(shí).
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會(huì)學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識(shí).
教學(xué)重難點(diǎn)
重點(diǎn):一元二次方程的概念及一般形式.
難點(diǎn):探求問題中的等量關(guān)系,建立方程模型
教學(xué)突破:
1、方程是否為一元二次方程,主要看是否滿足三個(gè)條件:(1)是整式方程;(2)只含有一個(gè)未知數(shù);(3)未知數(shù)的最高次數(shù)為2次
2、一元二次方程的各項(xiàng)系數(shù)均是相對(duì)于一般形式而言的,因此在教學(xué)中應(yīng)強(qiáng)調(diào):若要確定各項(xiàng)的系數(shù),應(yīng)先將方程化為一般形式。另外,一定要注意符號(hào),尤其符號(hào)不能漏掉。
教學(xué)過程設(shè)計(jì)
一、創(chuàng)設(shè)情境引入新課
問題1:
在長(zhǎng)30米,寬20米的矩形場(chǎng)地上,修筑同樣寬的兩條道路,余下的部分作為耕地,要使耕地的面積為500平方米,求道路的寬度?.
通過多媒體演示,把文字轉(zhuǎn)化為圖形,幫助學(xué)生理解題意,從而由學(xué)生獨(dú)立思考,列出滿足條件的方程.
問題2:
參加一次商品交易會(huì)的每?jī)杉夜局g都簽訂一份合同,所有公司共簽訂了45份合同,求有多少家參加商品交易會(huì)?
二、啟發(fā)探究獲得新知
1、一元二次方程的概念:經(jīng)整理后,,只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程,叫做一元二次方程。
說明:(1)由一問題得到2個(gè)方程,由學(xué)生觀察歸納這2個(gè)方程的特征,給出名稱并類比一元一次方程的定義,得出一元二次方程的定義.
(2)一元二次方程必須同時(shí)具備三個(gè)特征:a)整式方程; b)只含有一個(gè)未知數(shù); c)未知數(shù)的最高次數(shù)為2.
眼疾口快:
請(qǐng)搶答下列各式是否為一元二次方程:
。4)5x+3=10
說明:此環(huán)節(jié)采取搶答的形式,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性.
2、一元二次方程的一般式:
試一試:
例1、下面給出了某個(gè)方程的幾個(gè)特點(diǎn):
它的一般形式為
(2)它的二次項(xiàng)系數(shù)為5;
。3)常數(shù)項(xiàng)是一次項(xiàng)系數(shù)的倒數(shù)的相反數(shù)。
請(qǐng)你寫出一個(gè)符合條件的的一元二次方程
說明:此題設(shè)置的目的在于加深學(xué)生對(duì)一般形式的理解
三、運(yùn)用新知體驗(yàn)成功
小試牛刀:
1.將下列方程化成一元二次方程的一般形式,并
寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).
。1)5x 2 -1= 4x;
。2)4x 2 = 81;
。3)4x(x+2)=25;
。4)(3x – 2)( x + 1 ) = 8x - 3
說明:鞏固練習(xí)學(xué)生整理一般形式的方法,并準(zhǔn)確找出各項(xiàng)系數(shù).此環(huán)節(jié)可找學(xué)生口答結(jié)果.另讓學(xué)生落實(shí)將剛才教師板書的整理一般形式的過程,再次突出本節(jié)課的重點(diǎn)內(nèi)容
2.
(1)小區(qū)20xx年底擁有家庭轎車64輛,20xx年底家庭轎車的擁有輛達(dá)到100輛,若該小區(qū)這兩年的年平均增長(zhǎng)率相同,求年平均增長(zhǎng)率x;
。2)一個(gè)矩形的長(zhǎng)比寬多2厘米,面積是100平方厘米,求矩形的長(zhǎng)x;
。3)要組織一次籃球聯(lián)賽,每?jī)申?duì)之間都賽一場(chǎng),計(jì)劃安排21場(chǎng)比賽,有多少隊(duì)參加?
說明:這幾題有在實(shí)際生活中應(yīng)用的意義,以此題為例,教師板書整理一元二次方程的過程,讓學(xué)生學(xué)會(huì)如何整理任意一元二次方程的一般形式,并能準(zhǔn)確找到各項(xiàng)系數(shù).
教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:
(1)由一個(gè)學(xué)生列出方程,并解釋解題方法,教師進(jìn)行引導(dǎo),點(diǎn)評(píng),引起其他學(xué)生的`關(guān)注,認(rèn)同.
(2)教師在歸納點(diǎn)評(píng)過程中,應(yīng)注意把兩隊(duì)只打一場(chǎng)比賽解釋清楚,以便學(xué)生理解題意.
(3)整理一般形式后,教師應(yīng)強(qiáng)調(diào)整理過程中應(yīng)用到的等式變形方法,如去括號(hào),移項(xiàng),合并同類項(xiàng),去分母等.
(4)讓學(xué)生指出各項(xiàng)系數(shù)時(shí),教師強(qiáng)調(diào)系數(shù)須帶符合.
例2、當(dāng)m取何值時(shí),方程(m-2)xm2-2+3mx=5
是關(guān)于x的一元二次方程?
此題由學(xué)生思考,討論,并由學(xué)生給出結(jié)果并進(jìn)行解釋.
說明:此活動(dòng)過程中,教師應(yīng)重點(diǎn)關(guān)注:
(1)此題目在上一題的基礎(chǔ)上繼續(xù)加大難度,第(1)題須強(qiáng)調(diào)先進(jìn)行整理,再考慮二次項(xiàng)系數(shù)是否為零;第(2)題須先求出m值,再代入二次項(xiàng)系數(shù)中,驗(yàn)證是否為0,得到結(jié)果.
(2)學(xué)生解答過程中,教師把整理的一般形式書寫在黑板上,以便全體學(xué)生理解.
(2)學(xué)生解答過程中,教師把整理的一般形式書寫在黑板上,以便全體學(xué)生理解.
四、歸納小結(jié)拓展提高
1.問題:
本節(jié)課你又學(xué)會(huì)了哪些新知識(shí)?
說明:小結(jié)反思中,不同學(xué)生有不同的體會(huì),要尊重學(xué)生的個(gè)體差異,激發(fā)學(xué)生主動(dòng)參與意識(shí),.為每個(gè)學(xué)生都創(chuàng)造了數(shù)學(xué)活動(dòng)中獲得活動(dòng)經(jīng)驗(yàn)的機(jī)會(huì)。
2.還有什么疑惑?
五、布置作業(yè):
教科書第21.1第1、2、3題.
板書設(shè)計(jì)
21.1一元二次方程
一元二次方程的概念:方程兩邊都是整式,并且只含有一個(gè)未知數(shù),未知數(shù)的最高次數(shù)是2的方程叫一元二次方程。
一元二次方程的一般形式
a表示二次項(xiàng)系數(shù),b表示一次項(xiàng)系數(shù),c表示常數(shù)項(xiàng)。
例1.例1、下面給出了某個(gè)方程的幾個(gè)特點(diǎn):
它的一般形式為
。2)它的二次項(xiàng)系數(shù)為5;
(3)常數(shù)項(xiàng)是一次項(xiàng)系數(shù)的倒數(shù)的相反數(shù)。
請(qǐng)你寫出一個(gè)符合條件的的一元二次方程
例2、當(dāng)m取何值時(shí),方程(m-2)xm2-2+3mx=5
是關(guān)于x的一元二次方程?
學(xué)生學(xué)習(xí)活動(dòng)評(píng)價(jià)設(shè)計(jì):
關(guān)注學(xué)生在學(xué)習(xí)活動(dòng)中的表現(xiàn),如能否積極的參加活動(dòng),能否從不同的角度去思考問題,等等,而不是僅局限于學(xué)生列方程,判斷學(xué)生各項(xiàng)系數(shù)的正確與否。
重視學(xué)生應(yīng)用新知解決問題的能力的評(píng)價(jià),鼓勵(lì)學(xué)生使用數(shù)學(xué)語言,有條理地表達(dá)自己的思考過程,鼓勵(lì)大膽質(zhì)疑和創(chuàng)新。
一元二次方程教學(xué)設(shè)計(jì)7
教學(xué)目標(biāo):
。ㄒ唬┲R(shí)與技能:
1、理解并掌握用配方法解簡(jiǎn)單的一元二次方程。
2、能利用配方法解決實(shí)際問題,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力。
。ǘ┻^程與方法目標(biāo):
1、經(jīng)歷探索利用配方法解一元二次方程的過程,使學(xué)生體會(huì)到轉(zhuǎn)化的數(shù)學(xué)思想。
2、在理解配方法的基礎(chǔ)上,熟練應(yīng)用配方法解一元二次方程的過程,培養(yǎng)學(xué)生用轉(zhuǎn)化的數(shù)學(xué)思想解決實(shí)際問題的能力。
。ㄈ┣楦,態(tài)度與價(jià)值觀
啟發(fā)學(xué)生學(xué)會(huì)觀察,分析,尋找解題的途徑,提高學(xué)生分析問題,解決問題的能力。
教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):理解并掌握配方法,能夠靈活運(yùn)用用配方法解一元二次方程。
難點(diǎn):通過配方把一元二次方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式。
教學(xué)方法:根據(jù)教學(xué)內(nèi)容的特點(diǎn)及學(xué)生的年齡、心理特征及已有的知識(shí)水平,本節(jié)課采用問題教學(xué)和對(duì)比教學(xué)法,用“創(chuàng)設(shè)情境——建立數(shù)學(xué)模型——鞏固與運(yùn)用——反思、拓展”來展示教學(xué)活動(dòng)。
教學(xué)過程
教學(xué)過程
教學(xué)內(nèi)容
學(xué)生活動(dòng)
設(shè)計(jì)意圖
一 復(fù)習(xí)舊知
用直接開平方法解下列方程:
。1)9x2=4 (2)( x+3)2=0
總結(jié):上節(jié)課我們學(xué)習(xí)了用直接開平方法解形如(x+m)2=n(n≥0)的方程。
二 創(chuàng)設(shè)情境,設(shè)疑引新
在實(shí)際生活中,我們常常會(huì)遇到一些問題,需要用一元二次方程來解決。
例:小明用一段長(zhǎng)為 20米的竹籬笆圍成一個(gè)矩形,怎樣設(shè)計(jì)才可以使得矩形的面積為9米?
三 新知探究
1 提問:這樣的方程你能解嗎?
x2+6x+9=0 ①
2、提問:這樣的方程你能解嗎?
x2+6x+4=0 ②
思考:方程②與方程①有什么不同?能否把它化成方程①的形式呢?
歸納總結(jié)配方法:
通過配成完全平方式的方法,得到一元二次方程的解,這樣的解法叫做配方法。
配方法的依據(jù):完全平方公式
配方法的關(guān)鍵:給方程的兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方
點(diǎn)撥:先通過移項(xiàng)將方程左邊化為x2+ax形式,然后兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方進(jìn)行配方,然后直接開平方求解。
四 合作討論,自主探究
1、 配方訓(xùn)練
(1) x2+12x+( )=(x+6)2
(2) x2-12x+( )=(x- )2
(3) x2+8x+( )=(x+ )2
(4) x2+mx+( )=(x+ )2
強(qiáng)調(diào):當(dāng)一次項(xiàng)系數(shù)為負(fù)數(shù)或分?jǐn)?shù)時(shí),要注意運(yùn)算的準(zhǔn)確性。
2、將下列方程化為(x+m)2=n
(n≥0)的形式并計(jì)算出X值。
。1)x2-4x+3=0
。2)x2+3x-1=0
解:X2-4X+3=0
移向:得X2-4X=-3
配方:得X2-4X+2^2=-3+2^2(兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方)
即:(X-2)2=1
開平方,得:X-2=1或X-2=-1
所以:X=3或X=1
方程(2)有學(xué)生完成。
3、鞏固訓(xùn)練:課本55頁隨堂練習(xí)第一題。
五 小結(jié)
1、用配方法解二次項(xiàng)系數(shù)為一的一元二次方程的基本思路:先將方程化為(x+m)2=n(n≥0)的形式,然后兩邊開平方就可以得到方程的解。
2、用配方法解二次項(xiàng)系數(shù)為一的一元二次方程的一般步驟:
。1) 移項(xiàng)(常數(shù)項(xiàng)移到方程右邊)
(2) 配方(方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方)
。3) 開平方
(4) 解出方程的.根
六 布置作業(yè)
習(xí)題2.3第1,2題
兩個(gè)學(xué)生黑板上那解題,剩余學(xué)生練習(xí)本上計(jì)算。
學(xué)生觀看課件,思考老師提出的問題,得到:設(shè)該矩形的長(zhǎng)為x米,依題意得
x(10-x)=9
但是發(fā)現(xiàn)所列方程無法用直接開平方法解。于是引入新課。
學(xué)生通過觀察發(fā)現(xiàn),方程的左邊是一個(gè)完全平方式,可以化為( x+3)2=0,然后就可以運(yùn)用上節(jié)課學(xué)過的直接開平方法解了。
方程②的左邊不是一個(gè)完全平方式,于是不能直接開平方。學(xué)生陷入思考,給學(xué)生充分思考、交流的時(shí)間和空間。
在學(xué)生思考的時(shí)候,老師引導(dǎo)學(xué)生將方程②與方程①進(jìn)行對(duì)比分析,然后得到:
x2+6x=-4
x2+6x+9=-4+9
(x+3)2=5
從而可以用直接開平方法解,給出完整的解題過程。
在學(xué)生充分思考、討論的基礎(chǔ)上總結(jié):配方時(shí),常數(shù)項(xiàng)為一次項(xiàng)系數(shù)的一半的平方。
檢查學(xué)生的練習(xí)情況。小組合作交流。
學(xué)生歸納后教師再做相應(yīng)的補(bǔ)充和強(qiáng)調(diào)。
學(xué)生分組完成方程(2)和課后隨堂練習(xí)第一題
學(xué)生分組總結(jié)本節(jié)課知識(shí)內(nèi)容。
一元二次方程教學(xué)設(shè)計(jì)8
一、教學(xué)內(nèi)容分析
華師版九年級(jí)(上)23章《一元二次方程的根的判別式》一節(jié),教材中作為閱讀材料。從推導(dǎo)到應(yīng)用都比較簡(jiǎn)單。但是它在整個(gè)中學(xué)數(shù)學(xué)中占有重要的地位。
從知識(shí)的發(fā)展來看,學(xué)生通過對(duì)一元二次方程的根的判別式的學(xué)習(xí),可以鞏固已學(xué)過實(shí)數(shù)、整式、二次根式、一元一次不等式、一元二次方程的相關(guān)概念、一元二次方程的解法等知識(shí),既可以根據(jù)它來判斷一元二次方程的根的情況,又可以為今后研究二次函數(shù)的圖像與x軸交點(diǎn)情況,二次三項(xiàng)式以及二次曲線等奠定基礎(chǔ),并且用它可以解決許多其它綜合性問題。
通過這一節(jié)的學(xué)習(xí),使學(xué)生會(huì)用一元二次方程根的判別式判別方程是否有實(shí)根和兩個(gè)實(shí)根是否相等,培養(yǎng)學(xué)生的探索精神和觀察、分析、歸納的能力,以及邏輯思維能力、推理論證能力,并向?qū)W生滲透分類的數(shù)學(xué)思想,感受數(shù)學(xué)的簡(jiǎn)潔美。
教學(xué)重點(diǎn):根的判別式的正確理解和運(yùn)用
教學(xué)難點(diǎn):含字母系數(shù)的一元二次方程根的判別式的運(yùn)用。
二、學(xué)情分析
學(xué)生已經(jīng)學(xué)過一元二次方程的四種解法,并對(duì)的作用已經(jīng)有所了解,在此基礎(chǔ)上來進(jìn)一步研究作用,它是前面知識(shí)的深化與總結(jié)。
九年級(jí)學(xué)生的認(rèn)識(shí)水平漸漸由具體直覺占優(yōu)勢(shì)過渡到抽象思維占優(yōu)勢(shì)。教師的指導(dǎo)方法應(yīng)適應(yīng)他們的認(rèn)知特點(diǎn)和相應(yīng)規(guī)律。
從數(shù)學(xué)思想方法上來說,學(xué)生對(duì)分類討論、歸納總結(jié)的數(shù)學(xué)思想已經(jīng)有所接觸。所以可以通過讓學(xué)生動(dòng)手、動(dòng)腦來培養(yǎng)學(xué)生探索精神和觀察、分析、歸納的能力,以及邏輯思維能力、推理論證能力。
三、教學(xué)目標(biāo)
知識(shí)和技能目標(biāo):
1、能運(yùn)用根的判別式,判別方程根的情況和進(jìn)行有關(guān)的推理論證;
2、會(huì)運(yùn)用根的判別式求一元二次方程中字母系數(shù)的取值范圍;
過程和方法目標(biāo):
1、經(jīng)歷一元二次方程的根的判別式的產(chǎn)生的過程;
2、向?qū)W生滲透分類的數(shù)學(xué)思想;
3、培養(yǎng)學(xué)生的邏輯思維能力以及推理論證能力。
情感態(tài)度價(jià)值觀目標(biāo):
1、體驗(yàn)數(shù)學(xué)的簡(jiǎn)潔美;
2、培養(yǎng)學(xué)生的探索、創(chuàng)新精神和協(xié)作精神。
四、教法、學(xué)法:
教法:
1、探索發(fā)現(xiàn):本著“以學(xué)生發(fā)展為本”的.教育理念,教師啟發(fā)、誘導(dǎo),學(xué)生探索發(fā)現(xiàn)新知識(shí);
2、觀察演示:通過典型例題的分析、研究,引發(fā)學(xué)生的思考、質(zhì)疑、解疑;
3、歸納總結(jié):通過課堂小結(jié),完善認(rèn)知結(jié)構(gòu),提高認(rèn)識(shí)能力;
4、講練結(jié)合:通過變式訓(xùn)練、拓展訓(xùn)練,讓學(xué)生學(xué)會(huì)分類、類比、轉(zhuǎn)化等數(shù)學(xué)思想,培養(yǎng)學(xué)生分析問題和解決問題的能力。
學(xué)法:
1、自主探索:為了體現(xiàn)課改中“以學(xué)生為主體”的教育理念,通過創(chuàng)設(shè)一定的問題情境,注重由學(xué)生自己探索,讓學(xué)生參與發(fā)現(xiàn)、歸納驗(yàn)證以及演繹證明等整個(gè)數(shù)學(xué)思維過程。
2、合作交流:課上通過師生之間的互動(dòng),學(xué)生與學(xué)生之間的互動(dòng),充分發(fā)揮學(xué)生的主體作用。
五、教學(xué)過程:
教學(xué)流程 | 設(shè)計(jì)說明 |
<一>設(shè)置懸念,引發(fā)興趣: 1、我們已經(jīng)學(xué)會(huì)了怎么解一元二次方程,一元二次方程的根有哪幾種情況?能不能不解方程便判斷出它們根的情況? 2、由學(xué)生舉出幾個(gè)一元二次方程的例子,教師直接判斷出它們根的情況 | 這樣設(shè)計(jì),能激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲,為后面發(fā)現(xiàn)結(jié)論創(chuàng)造最佳的心理狀態(tài)。 |
<二>設(shè)置練習(xí),創(chuàng)設(shè)情境。 用公式法解下列一元二次方程 | 使學(xué)生親身感知一元二次方程根的情況,回顧已有知識(shí) |
<三>啟發(fā)引導(dǎo),發(fā)現(xiàn)結(jié)論: 觀察解題過程,可以發(fā)現(xiàn):在把系數(shù)代入求根公式之前,都是先確定了a、b、c的值,然后求出的值,為什么要這樣做呢?學(xué)生能說出 的作用是:它能決定方程是否可解。 由此可見:在解一元二次方程時(shí),代數(shù)式起著重要的作用,顯然我們可以根據(jù)的值的符號(hào)來判斷一元二次方程 的根的情況,因此我們把 叫做一元二次方程的根的判別式,通常用符號(hào)“△”來表示,即△=。在今后的數(shù)學(xué)學(xué)習(xí)中還會(huì)遇到用一個(gè)簡(jiǎn)單的符號(hào)來表示一個(gè)數(shù)學(xué)式子的情況,同學(xué)們要適應(yīng)這一點(diǎn),它體現(xiàn)了數(shù)學(xué)的簡(jiǎn)潔美。 | 讓學(xué)生明白: 的值的符號(hào)在解一元二次方程中所起的重要作用,從而很自然地引出了根的判別式概念。 培養(yǎng)學(xué)生從具體到抽象的觀察、分析與概括能力并使學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),真正體驗(yàn)自己發(fā)現(xiàn)結(jié)論的成功樂趣。 |
<四>引導(dǎo)學(xué)生,理論驗(yàn)證: 利用配方法,可以把一元二次方程變形為: ∵ ∴ , 故的值是正數(shù)、零還是負(fù)數(shù)直接對(duì)方程的根產(chǎn)生影響 (1)時(shí),可得: ,而且 (2)時(shí),, 顯然 (3)時(shí),, ∵ 負(fù)數(shù)沒有平方根 ∴ 方程沒有實(shí)數(shù)根 | 培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性,養(yǎng)成嚴(yán)格論證問題的習(xí)慣。 |
<五>揭示定理: (1)由此我們就得出了關(guān)于一元二次方程 的根的判別式定理: 在一元二次方程中, 若△>0 則方程有兩個(gè)不相等的實(shí)數(shù)根 若△ = 0 則方程有兩個(gè)相等的實(shí)數(shù)根 若△<0 則方程沒有實(shí)數(shù)根 (若△≥0 則方程有實(shí)數(shù)根) (2)這個(gè)定理的逆命題也成立,即有如下的逆定理: 在一元二次方程中, 若方程有兩個(gè)不相等的實(shí)數(shù)根,則△>0 若方程有兩個(gè)相等的實(shí)數(shù)根, 則△= 0 若方程沒有實(shí)數(shù)根, 則△<0 (若方程有實(shí)數(shù)根, 則△≥0) | 培養(yǎng)學(xué)生學(xué)會(huì)如何用數(shù)學(xué)語言來闡述發(fā)現(xiàn)的結(jié)論,如何將感性認(rèn)識(shí)上升到理性認(rèn)識(shí),以及加深學(xué)生對(duì)定理的認(rèn)識(shí),為正確運(yùn)用做好鋪墊。 |
<六>應(yīng)用定理,解決問題: 練習(xí)一:不解方程,判別下列方程根的情況 分析:判別方程根的情況,根據(jù)定理可知,就是要確定△值的符號(hào) 練習(xí)二: 不解方程,判別下列方程根的情況 | (4)題補(bǔ)充了一個(gè)含有字母系數(shù)的方程,補(bǔ)充此題的目的是:發(fā)展學(xué)生的符號(hào)意識(shí),為今后解綜合性問題打好基礎(chǔ)。 以上練習(xí)的設(shè)計(jì),主要是為了給學(xué)生創(chuàng)造一個(gè)知識(shí)運(yùn)用遷移及鞏固的機(jī)會(huì),同時(shí)也為了吸引和調(diào)動(dòng)全班同學(xué)參與到積極動(dòng)腦,各抒己見的活躍氣氛中來,并培養(yǎng)學(xué)生分析問題,解決問題的能力。 |
思考:已知關(guān)于的方程,當(dāng)取什么值時(shí),方程 (1) 有兩個(gè)不相等的實(shí)數(shù)根 (2) 有兩個(gè)相等的實(shí)數(shù)根 (3) 沒有實(shí)數(shù)根 分析:要解決這個(gè)問題,應(yīng)先根據(jù)方程根的情況,得出△的取值,從而求出的取值范圍。 | 本題是一個(gè)用逆定理來解決的問題,以鞏固逆定理的運(yùn)用方法,本題讓學(xué)生自己分析,教師只幫助學(xué)生理清思路,最后讓學(xué)生自己完成。 |
<七>歸納小結(jié) 一元二次方程中, 方程有兩個(gè)不相等的實(shí)數(shù)根 方程有兩個(gè)相等的實(shí)數(shù)根 方程沒有實(shí)數(shù)根 | 使學(xué)生系統(tǒng)地了解和掌握本節(jié)課的內(nèi)容 |
< 八>作業(yè)布置: (必做題)不解方程判定下列方程根的情況: (選做題)已知:方程有兩個(gè)實(shí)數(shù)根, 求:的取值范圍 | 使學(xué)生能及時(shí)鞏固本節(jié)課所學(xué)知識(shí),同時(shí)對(duì)學(xué)有余力的學(xué)生留出自由的發(fā)展空間。 |
一元二次方程教學(xué)設(shè)計(jì)9
教材內(nèi)容
1、本單元教學(xué)的主要內(nèi)容。
一元二次方程概念;解一元二次方程的方法;一元二次方程的應(yīng)用題。
2本、單元在教材中的地位與作用。
一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程組》、《分式方程》等基礎(chǔ)之上學(xué)習(xí)的,它也是一種數(shù)學(xué)建模的方法。學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,應(yīng)該說,一元二次方程是本書的重點(diǎn)內(nèi)容。
教學(xué)目標(biāo)
1、知識(shí)與技能
了解一元二次方程及有關(guān)概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據(jù)實(shí)際問題建立一元二次方程的數(shù)學(xué)模型的方法;應(yīng)用熟練掌握以上知識(shí)解決問題。
2、過程與方法
(1)通過豐富的實(shí)例,讓學(xué)生合作探討,老師點(diǎn)評(píng)分析,建立數(shù)學(xué)模型。根據(jù)數(shù)學(xué)模型恰如其分地給出一元二次方程的概念。
。2)結(jié)合八冊(cè)上整式中的'有關(guān)概念介紹一元二次方程的派生概念,如二次項(xiàng)等。
。3)通過掌握缺一次項(xiàng)的一元二次方程的解法──直接開方法,導(dǎo)入用配方法解一元二次方程,又通過大量的練習(xí)鞏固配方法解一元二次方程。
。4)通過用已學(xué)的配方法解ax2+bx+c=0(a≠0)導(dǎo)出解一元二次方程的求根公式,接著討論求根公式的條件:b2—4ac>0,b2—4ac=0,b2—4ac<0。
(5)通過復(fù)習(xí)八年級(jí)上冊(cè)《整式》的第5節(jié)因式分解進(jìn)行知識(shí)遷移,解決用因式分解法解一元二次方程,并用練習(xí)鞏固它。
。6)提出問題、分析問題,建立一元二次方程的數(shù)學(xué)模型,并用該模型解決實(shí)際問題。
3、情感、態(tài)度與價(jià)值觀
經(jīng)歷由事實(shí)問題中抽象出一元二次方程等有關(guān)概念的過程,使同學(xué)們體會(huì)到通過一元二次方程也是刻畫現(xiàn)實(shí)世界中的數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型;經(jīng)歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學(xué)們體會(huì)到轉(zhuǎn)化等數(shù)學(xué)思想;經(jīng)歷設(shè)置豐富的問題情景,使學(xué)生體會(huì)到建立數(shù)學(xué)模型解決實(shí)際問題的過程,從而更好地理解方程的意義和作用,激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)重點(diǎn)
1、一元二次方程及其它有關(guān)的概念。
2、用配方法、公式法、因式分解法降次──解一元二次方程。
3、利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個(gè)問題。
教學(xué)難點(diǎn)
1、一元二次方程配方法解題。
2、建立一元二次方程實(shí)際問題的數(shù)學(xué)模型;方程解與實(shí)際問題解的區(qū)別。
教學(xué)關(guān)鍵
1、分析實(shí)際問題如何建立一元二次方程的數(shù)學(xué)模型。
2、用配方法解一元二次方程的步驟。
3、解一元二次方程公式法的推導(dǎo)。
課時(shí)劃分
本單元教學(xué)時(shí)間約需13課時(shí),具體分配如下:
22.1一元二次方程2課時(shí)
22.2降次──解一元二次方程4課時(shí)(直接開方法1、配方法1、公式法1、因式分解法1)
習(xí)題課1課時(shí)
22.3實(shí)際問題與一元二次方程3課時(shí)
小結(jié)1課時(shí)
一元二次方程教學(xué)設(shè)計(jì)10
一、復(fù)習(xí)引入
1、已知方程 x2—ax—3a=0的一個(gè)根是6,則求a及另一個(gè)根的值。
2、有上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系。其實(shí)我們已學(xué)過的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有根簡(jiǎn)潔的關(guān)系?
3、有求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1= ,x2= 、觀察兩式左邊,分母相同,分子是—b+√b 2—4ac與—b—√b 2—4ac。兩根之間通過什么計(jì)算才能得到更簡(jiǎn)潔的關(guān)系?
二、探索新知
解下列方程,并填寫表格:
方 程x1x2x1+x2x1、 x2
x2—2x=0
x2+3x—4=0
x2—5x+6=0
觀察上面的表格,你能得到什么結(jié)論?
。1)關(guān)于x的方程 x2+px+q=0(p,q為常數(shù),p2—4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?
。2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1, x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?
解下列方程,并填寫表格:
方 程x1x2x1+x2x1、 x2
2x2—7x—4=0
3x2+2x—5=0
5x2—17x+6=0
小結(jié):1、根與系數(shù)關(guān)系:
。1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2—4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=—p, x1、 x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零。)
。2)形如的方程ax2+bx+c=0(a≠0),可以先將二次項(xiàng)系數(shù)化為1,再利用上面的結(jié)論。
即: 對(duì)于方程 ax2+bx+c=0(a≠0)
∵ ∴
∴ ,
(可以利用求根公式給出證明)
例1:不解方程,寫出下列方程的兩根和與兩根積:
例2:不解方程,檢驗(yàn)下列方程的解是否正確?
例3:已知一元二次方程的兩個(gè)根是—1和2,請(qǐng)你寫出一個(gè)符合條件的方程、(你有幾種方法?)
例4:已知方程 的一個(gè)根是 ,求另一根及k的值、
變式一:已知方程 的兩根互為相反數(shù),求k;
變式二:已知方程 的'兩根互為倒數(shù),求k;
三、鞏固練習(xí)
1、已知方程 的一個(gè)根是1,求另一根及m的值、
2、已知方程 的一個(gè)根為 ,求另一根及c的值、
四、應(yīng)用拓展
1、已知關(guān)于x的方程 的一個(gè)根是另一個(gè)根的2倍,求m的值、
2、已知兩數(shù)和為8,積為9,求這兩個(gè)數(shù)、
3、 x2—2x+6=0的兩根為x1,x2,則x1+x2=2,x1x2=6、是否正確?
五、歸納小結(jié)
1、根與系數(shù)的關(guān)系:
2、根與系數(shù)關(guān)系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零、
六、布置作業(yè)
1、不解方程,寫出下列方程的兩根和與兩根積。
(1)x2—5x—3=0 (2)9x+2= x2 (3) 6 x2—3x+2=0 (4)3x2+x+1=0
2、 已知方程x2—3x+m=0的一個(gè)根為1,求另一根及m的值、
3、 已知方程x2+bx+6=0的一個(gè)根為—2求另一根及b的值、
一元二次方程教學(xué)設(shè)計(jì)11
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
“一元二次方程的解法”是初中代數(shù)的方程中的一個(gè)重要內(nèi)容之一,是在學(xué)完一元一次方程、因式分解、數(shù)的開方、以及前三種因式分解法、直接開方法、配方法解一元二次方程的基礎(chǔ)上,掌握用求根公式解一元二次方程,是配方法和開平方兩個(gè)知識(shí)的綜合運(yùn)用和升華。通過本節(jié)課的教學(xué)使學(xué)生明確配方法是解方程的通法,同時(shí)會(huì)根據(jù)題目選擇合適的方法解一元二次方程。一元二次方程的解法也是今后學(xué)習(xí)二次函數(shù)和一元二次不等式的基礎(chǔ)。
。ǘ┙虒W(xué)目標(biāo)
知識(shí)技能方面:理解一元二次方程求根公式的推導(dǎo)過程,會(huì)用公式法解一元二次方程。
數(shù)學(xué)思考方面:通過求根公式的推導(dǎo)過程進(jìn)一步使學(xué)生熟練掌握配方法,培養(yǎng)學(xué)生數(shù)學(xué)推理的嚴(yán)密性和邏輯性以及由特殊到一般的數(shù)學(xué)思想。
解決問題方面:結(jié)合用公式法解一元二次方程的練習(xí),培養(yǎng)學(xué)生快速準(zhǔn)確的運(yùn)算能力和運(yùn)用公式解決實(shí)際問題的能力。
情感態(tài)度方面:讓學(xué)生體驗(yàn)到所有的方程都可以用公式法解決,感受到公式的對(duì)稱美、簡(jiǎn)潔美,滲透分類的思想;公式的引入培養(yǎng)學(xué)生尋求簡(jiǎn)便方法的.探索精神和創(chuàng)新意識(shí)。
(三)教學(xué)重、難點(diǎn)
重點(diǎn):掌握用公式法解一元二次方程的一般步驟;會(huì)熟練用公式法解一元二次方程。
難點(diǎn):理解求根公式的推導(dǎo)過程和判別式
二、教學(xué)法分析
教法:本節(jié)課采用引導(dǎo)發(fā)現(xiàn)式的自主探究式與交流討論結(jié)合的方法;在教學(xué)中由舊知識(shí)引導(dǎo)探究一般化問題的形式展開,利用學(xué)生已有的知識(shí)、多交流、主動(dòng)參與到教學(xué)活動(dòng)中來。
學(xué)法:讓學(xué)生學(xué)會(huì)善于觀察、分析討論和分類歸納的方法,提出問題后,鼓勵(lì)學(xué)生通過分析、探索、嘗試解決問題的方法,銅鎖親自嘗試,使學(xué)生的思維能力得到培養(yǎng)。
三、過程分析
本節(jié)課的教學(xué)設(shè)計(jì)成以下六個(gè)環(huán)節(jié):復(fù)習(xí)導(dǎo)入——呈現(xiàn)問題——例題講解——鞏固練習(xí)課時(shí)小結(jié)——布置作業(yè)。
1、復(fù)習(xí)引入:
這節(jié)課,我首先從舊知
問題(1)用配方法解方程2x28x90的練習(xí)引入,
問題(2)總結(jié)配方法的一般步驟(化一般方程——二次項(xiàng)系數(shù)為1——配方使左邊為完全平方式——兩邊開方——求解)。
設(shè)計(jì)意圖:讓學(xué)生鞏固昨天的知識(shí),進(jìn)一步熟練鑰匙并為今天做學(xué)的內(nèi)容解一般形式的一元二次方程做好鋪墊,達(dá)到“溫故而知新”。
2、問題呈現(xiàn):
你能用配方法解一般形式的一元二次方程嗎?
此處由一個(gè)特殊的舊知引導(dǎo)學(xué)生推導(dǎo)出一般的結(jié)果,希望學(xué)生學(xué)會(huì)由特殊性到一般化的思想。為降低b2b24ac推導(dǎo)的難度,化簡(jiǎn)、移項(xiàng)、配方、變形由我和學(xué)生一起探究完成,到(x這步時(shí),提出 )
問題:①此時(shí)可以直接開平方嗎?
②等號(hào)右邊的值需要滿足什么條件?為什么?
、鄣忍(hào)右邊的值只跟哪個(gè)式子有關(guān)?
設(shè)計(jì)意圖:師生共同完成前四步,這樣與利于減輕學(xué)生的思維負(fù)擔(dān),便于將主要精力放在后邊公式的推導(dǎo)上。通過小組的討論有利于發(fā)揮學(xué)生的互幫互助,借助小組的交流完善答案,關(guān)鍵讓學(xué)生會(huì)對(duì)掌握b24ac與方程有無實(shí)數(shù)根的關(guān)系,這里分類思想也是今后常用的一種數(shù)學(xué)思想,b24ac進(jìn)行討論,
應(yīng)加以強(qiáng)化。
最終總結(jié)出:
當(dāng)b24ac<0時(shí),原方程無實(shí)數(shù)解。
當(dāng)b24ac≥0時(shí),原方程有實(shí)數(shù)解,
再進(jìn)一步談?wù)摚篵24ac=0與b24ac>0時(shí),兩個(gè)解區(qū)別?
。╞24ac=0時(shí),兩個(gè)相等的實(shí)數(shù)解,b24ac>0時(shí),兩個(gè)不等的實(shí)數(shù)解)
由此可知,方程有解還是無解是由b24ac決定,即b24ac是方程解的判別式。
同時(shí),方程的解是可以將a、b、c
的值帶入公式x根公式”,利用它解一元二次方程叫做公式法。
3、例題講解
例4:用公式法解下列方程
總結(jié)步驟:
1、把方程公成一般形式,并寫出a,b,c的值。
2、求出b24ac的值
4、寫出方程的解:x1= ,x2=
設(shè)計(jì)意圖:規(guī)范解題格式,讓學(xué)生體會(huì)數(shù)學(xué)課中的嚴(yán)謹(jǐn)?shù)倪壿嬐评;體驗(yàn)并掌握公式法解一元二次方程的步驟,從中讓學(xué)生領(lǐng)會(huì)到由特殊到一般,一般到特殊的辯證思想。
4、鞏固練習(xí)
解下列一元二次方程:①x2x60
②4x2x90
、踴2100
設(shè)計(jì)意圖:
。1)熟悉公式法,強(qiáng)化解題格式,
(2)及時(shí)發(fā)現(xiàn)錯(cuò)誤及時(shí)解決。
例5:解方程:x(x1)(x2)
化簡(jiǎn)得12212x3x40 2
強(qiáng)調(diào):
、佼(dāng)方程不是一般形式時(shí),應(yīng)先化成一般形式,再運(yùn)用求根公式。
、谀氵能用其他方法解本例方程嗎?
設(shè)計(jì)意圖:明確一元二次方程解題方法的多樣性,讓學(xué)生在你觀察分析題目后靈活合理的選擇解題方法,培養(yǎng)學(xué)生的多樣化思維,提高解題能力和解題的速度。
5、課時(shí)小結(jié)
。1)學(xué)生作知識(shí)總結(jié):本節(jié)課通過配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步驟解一元二次方程。
。2)我擴(kuò)展:(方法歸納)求根公式是一元二次方程的專用公式,只有在確定方程是一元二次方程時(shí)才能使用,是常用而重要的一元二次方程的萬能求根公式。
6、布置作業(yè):面向全體學(xué)生,注重個(gè)體差異,加強(qiáng)作業(yè)的針對(duì)性,分層布置作業(yè),適應(yīng)新課標(biāo),讓不同的學(xué)生各其所長(zhǎng),因材施教的要求,提高他們的學(xué)習(xí)的興趣和自信心。
四、板書設(shè)計(jì)
本節(jié)課內(nèi)容較為單一,通過“層層設(shè)疑”、“復(fù)習(xí)回顧”等環(huán)節(jié)促進(jìn)學(xué)生的思考和探究。
通過比較合理的問題設(shè)計(jì)鞏固練習(xí)、小組討論等形式給學(xué)生提供了充分的展示機(jī)會(huì),強(qiáng)化了學(xué)生的運(yùn)算能力,有利于學(xué)生掌握基本技能。
一元二次方程教學(xué)設(shè)計(jì)12
教學(xué)目標(biāo)
一、 教學(xué)知識(shí)點(diǎn)
1、 經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.
2、 理解二次函數(shù)與 x 軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)根和沒有實(shí)根.
3、 理解一元二次方程的根就是二次函數(shù)與y =h 交點(diǎn)的橫坐標(biāo).
二、 能力訓(xùn)練要求
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探 索能力和創(chuàng)新精神
2、通過觀察二次函數(shù)與x 軸交 點(diǎn)的個(gè)數(shù),討論 一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.
3、通過學(xué)生共同觀察和討論,培養(yǎng)合作交流意識(shí).
三、 情感與價(jià)值觀要求
1、 經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.
2、 具有初步的創(chuàng)新精神和實(shí)踐能力.
教學(xué)重點(diǎn)
1.體會(huì)方程與函數(shù)之間的聯(lián)系.
2.理解何 時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)根和沒有實(shí)根.
3.理解一元二次方程的根就是二次函數(shù)與y =h 交點(diǎn)的橫坐標(biāo).
教學(xué)難點(diǎn)
1、探索方程與函數(shù)之間的聯(lián)系的過程.
2、理解二次函數(shù)與x 軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系.
教學(xué)方法
討論探索法
教學(xué)過程:
1、 設(shè)問題情境,引入新課
我們已學(xué)過一元一次方程kx+b=0 (k0)和一次函數(shù)y =kx+b (k0)的關(guān)系,你還記得嗎?
它們之間的關(guān)系是:當(dāng)一次函數(shù)中的函數(shù)值y =0時(shí),一次函數(shù)y =kx+b就轉(zhuǎn)化成了一元一次方 程kx+b=0,且一次函數(shù)的圖像與x 軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b=0的解.
現(xiàn)在我們學(xué)習(xí)了一元二次方程和二次函數(shù),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題.
2、 新課講解
例題講解
我們已經(jīng)知道,豎直上拋物體的高度h (m )與運(yùn)動(dòng)時(shí)間t (s )的關(guān)系可以用公式 h =-5t 2+v 0t +h 0表示,其中h 0(m)是拋出時(shí)的.高度,v 0(m/s )是拋出時(shí)的速度.一個(gè)小球從地面被以40m/s 速度豎直向上拋起,小球的高度h(m)與運(yùn)動(dòng)時(shí)間t(s)的關(guān)系如下圖所示,那么
(1)h 與t 的關(guān)系式是什么?
(2)小球經(jīng)過多少秒后落地?你有幾種求解方法?
小組交流,然后發(fā)表自己的看法.
學(xué)生交流:(1)h 與t 的關(guān)系式是h =-5 t 2+v 0t +h 0,其中的v 0
為40m/s,小球從地面拋起,所以h 0=0.把v 0,h 0帶入上式即可
求出h 與t 的關(guān)系式h =-5t 2+40t
(2)小球落地時(shí)h為0 ,所以只要令 h =-5t 2+v 0t +h 0中的h=0求出t即可.也就是
-5t 2+40t=0
t 2-8t=0
t(t- 8)=0
t=0或t=8
t=0時(shí)是小球沒拋時(shí)的時(shí)間,t=8是小球落地時(shí)的時(shí)間.
也可以觀察圖像,從圖像上可看到t =8時(shí)小球落地.
議一議
二次函數(shù)①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的圖像如下圖所示
(1)每個(gè)圖像與x 軸有幾個(gè)交點(diǎn)?
(2)一元二次方程x2+2x=0 , x2-2x+1=0有幾個(gè)根?解方程驗(yàn)證一下, 一元二次方程x2-2x +2=0有根嗎?
(3)二次函數(shù)的圖像y=ax2+bx+c 與x 軸交點(diǎn)的坐標(biāo)與一元二次方程ax2+bx+c=0 的根有什么關(guān)系?
學(xué)生討論后,解答如 下:
(1)二次函數(shù)①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的圖像與x 軸分別有兩個(gè)交點(diǎn)、一個(gè)交點(diǎn),沒有交點(diǎn).
(2)一元二次方程x 2+2x=0有兩個(gè)根0,-2 ;x2-2x+1=0有兩個(gè)相等的實(shí)數(shù)根1或一個(gè)根1 ;方程x2-2x +2=0沒有實(shí)數(shù)根
(3)從圖像和討論知,二次函數(shù)y=x2+2x與x 軸有兩個(gè)交點(diǎn)(0,0),(-2,0) ,方程x2+2x=0有兩個(gè)根0,-2;
二次函數(shù)y=x2-2x+1的圖像與x 軸有一個(gè)交點(diǎn)(1,0),方程 x2-2x+1=0 有兩個(gè)相等的實(shí)數(shù)根1或一個(gè)根1
二次函數(shù)y=x2-2x +2 的圖像與x 軸沒有交點(diǎn), 方程x2-2x +2=0沒有實(shí)數(shù)根
由此可知 ,二次函數(shù)y=ax2+bx+c 的圖像與x 軸交點(diǎn)的橫坐標(biāo)即為一元二次方程ax2+bx+c=0的根.
小結(jié):
二次函數(shù)y=ax2+bx+c 的圖像與x 軸交點(diǎn)有三種情況:有兩個(gè)交點(diǎn)、一個(gè)交點(diǎn)、沒有焦點(diǎn).當(dāng)二次函數(shù)y=ax2+bx+c 的圖像與x 軸有交點(diǎn)時(shí) ,交點(diǎn)的橫坐標(biāo)就是當(dāng)y =0時(shí)自變量x 的值,即一元二次方程ax2+bx+c=0的根.
基礎(chǔ)練習(xí)
1、判斷下列各拋物線是否與x軸相交,如果相交,求出交點(diǎn)的坐標(biāo).
(1)y=6x2-2x+1 (2)y=-15x2+14x+8 (3)y=x2-4x+4
2、已知拋物線y=x2-6x+a的頂點(diǎn)在x軸上,則a= ;若拋物線與x軸有兩個(gè)交點(diǎn),則a的范圍是
3、已知拋物線y=x2-3x+a+1與x軸最多只有一個(gè)交點(diǎn),則a的范圍是 .
4、已知拋物線y=x2+px+q與x 軸的兩個(gè)交點(diǎn)為(-2,0),(3,0),則p= ,q= .
5. 已知拋物線 y=-2(x+1)2+8 ①求拋物線與y軸的交點(diǎn)坐標(biāo);②求拋物線與x軸的兩個(gè)交點(diǎn)間的距離.
6、拋物線y=a x2+bx+c(a0)的圖象全部在軸下方的條件是( )
(A) a0 b2-4ac0(B)a0 b2-4ac0
(B) (C)a0 b2- 4ac0 (D)a0 b2-4ac0
想一想
在本節(jié)一開始的小球上拋問題中,何時(shí)小球離地面的高度是60 m?你是怎樣知道的?
學(xué)生交流:在式子h =-5t 2+v 0t +h 0中v 0為40m/s, h 0=0,h=60 m,代入上式得
-5t 2+40t=60
t 28t+12=0
t=2或t=6
因此當(dāng)小球離開地面2秒和6秒時(shí),高度是6 0 m.
課堂練習(xí) 72頁
小結(jié) :本節(jié)課學(xué)習(xí)了如下內(nèi)容:
1、若一元二 次方程ax2+bx+c=0的兩個(gè)根是x1、x2, 則拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)坐標(biāo)分別是A(x1,0 ), B( x2,0 )
2、一元二次方程ax2+bx+c=0與二次三項(xiàng)式ax2+bx+c及二次函數(shù)y=ax2+bx+c這三個(gè)二次之間互相轉(zhuǎn)化的關(guān)系.體現(xiàn)了數(shù)形結(jié)合的思想3、二次函數(shù)y=ax2+bx+c何時(shí)為一元二次方程?
一元二次方程教學(xué)設(shè)計(jì)13
由"倍數(shù)關(guān)系"等問題建立數(shù)學(xué)模型,并通過配方法或公式法或分解因式法解決實(shí)際問題.
教學(xué)目標(biāo)
掌握用"倍數(shù)關(guān)系"建立數(shù)學(xué)模型,并利用它解決一些具體問題.
通過復(fù)習(xí)二元一次方程組等建立數(shù)學(xué)模型,并利用它解決實(shí)際問題,引入用"倍數(shù)關(guān)系"建立數(shù)學(xué)模型,并利用它解決實(shí)際問題.
重難點(diǎn)關(guān)鍵
1.重點(diǎn):用"倍數(shù)關(guān)系"建立數(shù)學(xué)模型
2.難點(diǎn)與關(guān)鍵:用"倍數(shù)關(guān)系"建立數(shù)學(xué)模型
教學(xué)過程
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))問題1:列方程解應(yīng)用題
下表是某一周甲、乙兩種股票每天每股的收盤價(jià)(收盤價(jià):股票每天交易結(jié)果時(shí)的價(jià)格):
星期 一 二 三 四 五
甲 12元 12.5元 12.9元 12.45元 12.75元
乙 13.5元 13.3元 13.9元 13.4元 13.75元
某人在這周內(nèi)持有若干甲、乙兩種股票,若按照兩種股票每天的收盤價(jià)計(jì)算(不計(jì)手續(xù)費(fèi)、稅費(fèi)等),則在他帳戶上,星期二比星期一增加200元,星期三比星期二增加1300元,這人持有的甲、乙股票各多少股?
老師點(diǎn)評(píng)分析:一般用直接設(shè)元,即問什么就設(shè)什么,即設(shè)這人持有的甲、乙股票各x、y張,由于從表中知道每天每股的收盤價(jià),因此,兩種股票當(dāng)天的帳戶總數(shù)就是x或y乘以相應(yīng)的每天每股的收盤價(jià),再根據(jù)已知的等量關(guān)系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.
解:設(shè)這人持有的甲、乙股票各x、y張.
則 解得
答:(略)
二、探索新知
上面這道題大家都做得很好,這是一種利用二元一次方程組的數(shù)量關(guān)系建立的數(shù)學(xué)模型,那么還有沒有利用其它形式,也就是利用我們前面所學(xué)過的一元二次方程建立數(shù)學(xué)模型解應(yīng)用題呢?請(qǐng)同學(xué)們完成下面問題.
(學(xué)生活動(dòng))問題2:某工廠第一季度的一月份生產(chǎn)電視機(jī)是1萬臺(tái),第一季度生產(chǎn)電視機(jī)的總臺(tái)數(shù)是3.31萬臺(tái),求二月份、三月份生產(chǎn)電視機(jī)平均增長(zhǎng)的百分率是多少?
老師點(diǎn)評(píng)分析:直接假設(shè)二月份、三月份生產(chǎn)電視機(jī)平均增長(zhǎng)率為x.因?yàn)橐辉路菔?萬臺(tái),那么二月份應(yīng)是(1+x)臺(tái),三月份應(yīng)是在二月份的.基礎(chǔ)上以二月份比一月份增長(zhǎng)的同樣"倍數(shù)"增長(zhǎng),即(1+x)+(1+x)x=(1+x)2,那么就很容易從第一季度總臺(tái)數(shù)列出等式.
解:設(shè)二月份、三月份生產(chǎn)電視機(jī)平均增長(zhǎng)的百分率為x,則1+(1+x)+(1+x)2=3.31
去括號(hào):1+1+x+1+2x+x2=3.31
整理,得:x2+3x-0.31=0
解得:x=10%
答:(略)
以上這一道題與我們以前所學(xué)的一元一次、二元一次方程(組)、分式方程等為背景建立數(shù)學(xué)模型是一樣的,而我們借助的是一元二次方程為背景建立數(shù)學(xué)模型來分析實(shí)際問題和解決問題的類型.
例1.某電腦公司20xx年的各項(xiàng)經(jīng)營(yíng)中,一月份的營(yíng)業(yè)額為200萬元,一月、二月、三月的營(yíng)業(yè)額共950萬元,如果平均每月營(yíng)業(yè)額的增長(zhǎng)率相同,求這個(gè)增長(zhǎng)率.
分析:設(shè)這個(gè)增長(zhǎng)率為x,由一月份的營(yíng)業(yè)額就可列出用x表示的二、三月份的營(yíng)業(yè)額,又由三月份的總營(yíng)業(yè)額列出等量關(guān)系.
解:設(shè)平均增長(zhǎng)率為x
則200+200(1+x)+200(1+x)2=950
整理,得:x2+3x-1.75=0
解得:x=50%
答:所求的增長(zhǎng)率為50%.
三、鞏固練習(xí)
(1)某林場(chǎng)現(xiàn)有木材a立方米,預(yù)計(jì)在今后兩年內(nèi)年平均增長(zhǎng)p%,那么兩年后該林場(chǎng)有木材多少立方米?
(2)某化工廠今年一月份生產(chǎn)化工原料15萬噸,通過優(yōu)化管理,產(chǎn)量逐年上升,第一季度共生產(chǎn)化工原料60萬噸,設(shè)二、三月份平均增長(zhǎng)的百分率相同,均為x,可列出方程為__________.
四、應(yīng)用拓展
例2.某人將20xx元人民幣按一年定期存入銀行,到期后支取1000元用于購(gòu)物,剩下的1000元及應(yīng)得利息又全部按一年定期存入銀行,若存款的利率不變,到期后本金和利息共1320元,求這種存款方式的年利率.
分析:設(shè)這種存款方式的年利率為x,第一次存20xx元取1000元,剩下的本金和利息是1000+20xxx·80%;第二次存,本金就變?yōu)?000+20xxx·80%,其它依此類推.
解:設(shè)這種存款方式的年利率為x
則:1000+20xxx·80%+(1000+20xxx·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2= =0.125=12.5%
答:所求的年利率是12.5%.
五、歸納小結(jié)
本節(jié)課應(yīng)掌握:
利用"倍數(shù)關(guān)系"建立關(guān)于一元二次方程的數(shù)學(xué)模型,并利用恰當(dāng)方法解它.
六、布置作業(yè)
1.教材P53 復(fù)習(xí)鞏固1 綜合運(yùn)用1.
2.選用作業(yè)設(shè)計(jì).
作業(yè)設(shè)計(jì)
一、選擇題
1.20xx年一月份越南發(fā)生禽流感的養(yǎng)雞場(chǎng)100家,后來二、三月份新發(fā)生禽流感的養(yǎng)雞場(chǎng)共250家,設(shè)二、三月份平均每月禽流感的感染率為x,依題意列出的方程是( ).
A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250
C.100(1-x)2=250 D.100(1+x)2
2.一臺(tái)電視機(jī)成本價(jià)為a元,銷售價(jià)比成本價(jià)增加25%,因庫存積壓,所以就按銷售價(jià)的70%出售,那么每臺(tái)售價(jià)為( ).
A.(1+25%)(1+70%)a元 B.70%(1+25%)a元
C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元
3.某商場(chǎng)的標(biāo)價(jià)比成本高p%,當(dāng)該商品降價(jià)出售時(shí),為了不虧損成本,售價(jià)的折扣(即降低的百分?jǐn)?shù))不得超過d%,則d可用p表示為( ).
A. B.p C. D.
二、填空題
1.某農(nóng)戶的糧食產(chǎn)量,平均每年的增長(zhǎng)率為x,第一年的產(chǎn)量為6萬kg,第二年的產(chǎn)量為_______kg,第三年的產(chǎn)量為_______,三年總產(chǎn)量為_______.
2.某糖廠20xx年食糖產(chǎn)量為at,如果在以后兩年平均增長(zhǎng)的百分率為x,那么預(yù)計(jì)20xx年的產(chǎn)量將是________.
3.我國(guó)政府為了解決老百姓看病難的問題,決定下調(diào)藥品價(jià)格,某種藥品在1999年漲價(jià)30%后,20xx年降價(jià)70%至a元,則這種藥品在1999年漲價(jià)前價(jià)格是__________.
三、綜合提高題
1.為了響應(yīng)國(guó)家"退耕還林",改變我省水土流失的嚴(yán)重現(xiàn)狀,20xx年我省某地退耕還林1600畝,計(jì)劃到20xx年一年退耕還林1936畝,問這兩年平均每年退耕還林的平均增長(zhǎng)率2.洛陽東方紅拖拉機(jī)廠一月份生產(chǎn)甲、乙兩種新型拖拉機(jī),其中乙型16臺(tái),從二月份起,甲型每月增產(chǎn)10臺(tái),乙型每月按相同的增長(zhǎng)率逐年遞增,又知二月份甲、乙兩型的產(chǎn)量之比是3:2,三月份甲、乙兩型產(chǎn)量之和為65臺(tái),求乙型拖拉機(jī)每月的增長(zhǎng)率及甲型拖拉機(jī)一月份的產(chǎn)量.
3.某商場(chǎng)于第一年初投入50萬元進(jìn)行商品經(jīng)營(yíng),以后每年年終將當(dāng)年獲得的利潤(rùn)與當(dāng)年年初投入的資金相加所得的總資金,作為下一年年初投入的資金繼續(xù)進(jìn)行經(jīng)營(yíng).
(1)如果第一年的年獲利率為p,那么第一年年終的總資金是多少萬元?(用代數(shù)式來表示)(注:年獲利率= ×100%)
(2)如果第二年的年獲利率多10個(gè)百分點(diǎn)(即第二年的年獲利率是第一年的年獲利率與10%的和),第二年年終的總資金為66萬元,求第一年的年獲利率.
答案:
一、1.B 2.B 3.D
二、1.6(1+x) 6(1+x)2 6+6(1+x)+6(1+x)2
2.a(1+x)2t
3.
三、1.平均增長(zhǎng)率為x,則1600(1+x)2=1936,x=10%
2.設(shè)乙型增長(zhǎng)率為x,甲型一月份產(chǎn)量為y:
則
即16x2+56x-15=0,解得x= =25%,y=20(臺(tái))
3.(1)第一年年終總資金=50(1+P)
(2)50(1+P)(1+P+10%)=66,整理得:P2+2.1P-0.22=0,解得P=10。
一元二次方程教學(xué)設(shè)計(jì)14
一、教學(xué)目標(biāo):
1、知識(shí)與能力:理解配方法,會(huì)利用配方法以一元二次式進(jìn)行配方。通過對(duì)比、轉(zhuǎn)化,總結(jié)得出配方法的一般過程,提高分析能力。通過對(duì)一元二次方程二次項(xiàng)系數(shù)是否為1的分類處理,鍛煉學(xué)生的抽象概括能力。
2、過程與方法:會(huì)用配方法解簡(jiǎn)單的數(shù)學(xué)系數(shù)的一元二次方程。發(fā)現(xiàn)不同方程的轉(zhuǎn)化方式,運(yùn)用已有知識(shí)解決新問題。
3、情感態(tài)度價(jià)值觀:通過配方法的探究活動(dòng),培養(yǎng)學(xué)生勇于探索的良好學(xué)習(xí)習(xí)慣。感覺數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
二、教學(xué)重難點(diǎn):
1、重點(diǎn)---會(huì)利用配方法熟練解一元二次方程。
2、難點(diǎn)---對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程通過系數(shù)化1進(jìn)行適當(dāng)變形后再利用配方法求解。
三、教學(xué)過程
(一)活動(dòng)1:提出問題
要使一塊長(zhǎng)方形場(chǎng)地的長(zhǎng)比寬多6m,并且面積為16m2,場(chǎng)地的長(zhǎng)和寬各是多少?設(shè)計(jì)意圖:讓學(xué)生在解決實(shí)際問題中學(xué)習(xí)一元二次方程的解法。
師生行為:教師引導(dǎo)學(xué)生回顧列方程解決實(shí)際問題的基本思路,學(xué)生討論分析。
。ǘ┗顒(dòng)2:溫故知新
1.填上適當(dāng)?shù)臄?shù),使下列各式成立,并總結(jié)其中的規(guī)律。(1)x+ 6x+ =(x +3 ) (2) x+8x+ =(x+ )(3)x2-12x+ =(x- )2 (4) x2- 5x+ =(x- )2 (5)a2+2ab+ =(a+ )2 (6)a2-2ab+ =(a- )2 2.用直接開平方法解方程:x2+6x+9=2設(shè)計(jì)意圖:第一題為口答題,復(fù)習(xí)完全平方公式,旨在引出配方法,培養(yǎng)學(xué)生探究的興趣。
1
222
用心
愛心
專心(三)活動(dòng)2:自主學(xué)習(xí)
自學(xué)課本P31---P32思考下列問題:
1.仔細(xì)觀察教材問題2,所列出的方程x2+6x-16=0利用直接開平方法能解嗎?2.怎樣解方程x2+6x-16=0?看教材框圖,能理解框圖中的每一步嗎?(同學(xué)之間可以交流、師生間也可交流。)
3.討論:在框圖中第二步為什么方程兩邊加9?加其它數(shù)行嗎?4.什么叫配方法?配方法的目的是什么?5.配方的關(guān)鍵是什么?交流與點(diǎn)撥:
重點(diǎn)在第2個(gè)問題,可以互相交流框圖中的每一步,實(shí)際上也是第3個(gè)問題的討論,教師這時(shí)對(duì)框圖中重點(diǎn)步驟作講解,特別是兩邊加9是配方的關(guān)鍵,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。
注意:9=(),而6是方程一次項(xiàng)系數(shù)。所以得出配方的關(guān)鍵是方程兩邊加上一次項(xiàng)系數(shù)一半的平方,從而配成完全平方式。
設(shè)計(jì)意圖:學(xué)生通過自學(xué)經(jīng)歷思考、討論、分析的過程,最終形成把一個(gè)一元二次方程配成完全平方式形式來解方程的思想
(四)活動(dòng)4:例題學(xué)習(xí)
例(教材P33例1)解下列方程:(1)x-8x+1=0 (2)2x+1=-3x (3)3x2-6x+4=0教師要選擇例題書寫解題過程,通過例題的學(xué)習(xí)讓學(xué)生仔細(xì)體會(huì)用配方法解方程的一般步驟。
交流與點(diǎn)撥:用配方法解一元二次方程的一般步驟:
。1)將方程化成一般形式并把二次項(xiàng)系數(shù)化成1;(方程兩邊都除以二次項(xiàng)系數(shù))(2)移項(xiàng),使方程左邊只含有二次項(xiàng)和一次項(xiàng),右邊為常數(shù)項(xiàng)。(3)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方。(4)原方程變?yōu)? mx+n)2=p的形式。
。5)如果右邊是非負(fù)數(shù),就可用直接開平方法求取方程的解。設(shè)計(jì)意圖:牢牢把握通過配方將原方程變?yōu)?mx+n)2=p的形式方法。
。ㄎ澹┱n堂練習(xí):
1.教材P34練習(xí)1(做在課本上,學(xué)生口答)2.教材P34練習(xí)2師生行為:對(duì)于第二題根據(jù)時(shí)間可以分兩組完成,學(xué)生板演,教師點(diǎn)評(píng)。設(shè)計(jì)意圖:通過練習(xí)加深學(xué)生用配方法解一元二次方程的方法。
四、歸納與小結(jié):
1.理解配方法解方程的含義。
2.要熟練配方法的技巧,來解一元二次方程,
3.掌握配方法解一元二次方程的一般步驟,并注意每一步的易錯(cuò)點(diǎn)。 4.配方法解一元二次方程的解題思想:“降次”由二次降為一次。
五、布置作業(yè)
教材P42習(xí)題22.2第3題
---教后反思
通過本節(jié)課的學(xué)習(xí),我發(fā)現(xiàn):配方法不僅是解一元二次方程的方法之一,而且它還可作為其它許多數(shù)學(xué)問題的一種研究思想,其發(fā)揮的作用和意義十分重要。從學(xué)生的學(xué)習(xí)情況來看,效果普遍良好,且已基本掌握了這種數(shù)學(xué)方法,從本節(jié)課的.具體教學(xué)過程來分析,我有以下幾點(diǎn)體會(huì)和認(rèn)識(shí)。
1:學(xué)生對(duì)這塊知識(shí)的理解很好,學(xué)生自己總結(jié)了配方法的具體步驟,即:①化二次項(xiàng)系數(shù)為1;②移常數(shù)項(xiàng)到方程右邊;③方程兩邊同時(shí)配上一次項(xiàng)系數(shù)一半的平方;④化方程左邊為完全平方式;⑤(若方程右邊為非負(fù)數(shù))利用直接開平方法解得方程的根。理解起來也很容易,然后再加以練習(xí)鞏固
2:教學(xué)方法上的幾點(diǎn)體會(huì):①需要?jiǎng)?chuàng)造性地使用教材,可以根據(jù)學(xué)生的實(shí)際情況對(duì)教材內(nèi)容進(jìn)行適當(dāng)調(diào)整。②相信學(xué)生要為學(xué)生提供充分展示自己的機(jī)會(huì)本節(jié)課多次組織學(xué)生合作交流,通過小組合作,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過程中教師發(fā)現(xiàn)了學(xué)生在分析問題和解決問題時(shí)出現(xiàn)的獨(dú)到見解,以及思維的誤區(qū),這樣使得老師可以更好地指導(dǎo)今后的教學(xué)。 3:當(dāng)然在這一塊知識(shí)的教學(xué)過程中,學(xué)生也出現(xiàn)了個(gè)別錯(cuò)誤,表現(xiàn)在:①二次項(xiàng)系數(shù)沒有化為1就盲目配方;②不能給方程“兩邊”同時(shí)配方;③配方之后,右邊是0,結(jié)果方程根書寫成x=﹡的形式(應(yīng)為x1=x2=﹡);④所給方程的未知字母有時(shí)不是x,而是y、z、a、m等,但個(gè)別粗心甚至細(xì)心的同學(xué)在結(jié)果寫方程根時(shí)字母都變成了x。對(duì)于以上錯(cuò)誤,我在最后的知識(shí)小結(jié)中,又重點(diǎn)強(qiáng)調(diào)了配方法的一般步驟,并說明其中關(guān)鍵的一步是第③步,必須依據(jù)等式的基本性質(zhì)給方程兩邊同時(shí)加常數(shù)。
4、對(duì)于基礎(chǔ)較差的少數(shù)學(xué)生我只要求認(rèn)真理解并鞏固“配方法”;對(duì)于基礎(chǔ)較好的同學(xué)根據(jù)他們的課堂反應(yīng),我還在知識(shí)拓寬方面加以提示:因?yàn)橥耆椒绞降闹刀ㄊ欠秦?fù)數(shù),故若在說明某一多項(xiàng)式是否為非負(fù)數(shù)時(shí),可采用配方法來證,這樣對(duì)有些善于鉆研思考的同學(xué)來說,在有關(guān)配方法的應(yīng)用和探究方面,為之起到“拋磚引玉”的作用,也為后期部分知識(shí)的教學(xué)作了一定的鋪墊。
5、在我本節(jié)課的教學(xué)當(dāng)中,也有如下不妥之處:①對(duì)不同層次的學(xué)生要求程度不適當(dāng);②在提示和啟發(fā)上有些過度;③為學(xué)生提供的思考問題時(shí)間較少,導(dǎo)致部分學(xué)生對(duì)本節(jié)知識(shí)“囫圇吞棗”,而最終“消化不良”,在以后的課堂教學(xué)中,我會(huì)力爭(zhēng)克服以上不足。
一元二次方程教學(xué)設(shè)計(jì)15
一、教學(xué)目標(biāo)
1.知識(shí)與技能
(1)會(huì)根據(jù)增長(zhǎng)率問題中的數(shù)量關(guān)系和等量關(guān)系,列出一元二次方程,并能對(duì)方程解的合理性作出解釋;
2.過程與方法
通過猜想、探討構(gòu)建一元二次方程模型.
3.情感、態(tài)度與價(jià)值觀
。ǎ保┩ㄟ^自主、探究性學(xué)習(xí),使學(xué)生養(yǎng)成良好的思維習(xí)慣;
。ǎ玻┩ㄟ^對(duì)方程解的合理性解釋,培養(yǎng)學(xué)習(xí)實(shí)事求是的作風(fēng).
二、教學(xué)重點(diǎn)難點(diǎn)
1.重點(diǎn)
找出問題中的數(shù)量關(guān)系;
2.難點(diǎn)
找等量關(guān)系并列出相應(yīng)方程.
三、教材分析
本節(jié)課是從實(shí)際問題引入的基本概念,學(xué)習(xí)方程的基本解法之后所提出的一些實(shí)際問題,以及最后一節(jié)的實(shí)踐與探索,都是為了給與學(xué)生都創(chuàng)造一些探索交流的機(jī)會(huì),讓學(xué)生了解數(shù)學(xué)知識(shí)的發(fā)展,學(xué)會(huì)解決一些簡(jiǎn)單問題的方法,特別是從實(shí)際情景尋找所隱含的數(shù)量關(guān)系,建立適當(dāng)?shù)臄?shù)學(xué)模型.
四、教學(xué)過程與互動(dòng)設(shè)計(jì)
。ㄒ唬毓手
1.請(qǐng)同學(xué)們回憶并回答解一元一次方程應(yīng)用題的一般步驟:
第一步:弄清題意和題目中的已知數(shù)、未知數(shù),用字母表示題目中的一個(gè)未知數(shù);
第二步:找出能夠表示應(yīng)用題全部含義的相等關(guān)系;
第三步:根據(jù)這些相等關(guān)系列出需要的代數(shù)式(簡(jiǎn)稱關(guān)系式),從而列出方程;
第四步:解這個(gè)方程,求出未知數(shù)的值;
第五步:在檢查求得的答數(shù)是否符合應(yīng)用題的實(shí)際意義后,寫出答案(包括單位名稱.)
2.解一元二次方程的應(yīng)用題的步驟與解一元一次方程應(yīng)用題的步驟一樣.
我們先來解一些具體的題目,然后總結(jié)一些規(guī)律或應(yīng)注意事項(xiàng).
。ǘ﹦(chuàng)設(shè)情景,導(dǎo)入新課
1.一個(gè)長(zhǎng)為10米的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8米.
若梯子的頂端下滑1米,那么
。1)猜一猜,底端也將滑動(dòng)
1米嗎?
。2)列出底端滑動(dòng)距離所滿足的方程.
【答案】①底端將滑動(dòng)1米多
、谔崾荆合壤霉垂啥ɡ碓趯(shí)際問題中的應(yīng)用,說明數(shù)學(xué)來源于實(shí)際.
2.【探究活動(dòng)】1.某商店1月份的利潤(rùn)是2500元,3月份的利潤(rùn)達(dá)到3000元,這兩個(gè)月的利潤(rùn)平均增長(zhǎng)的百分率是多少(精確到0.1%)?
(1)學(xué)生討論:怎樣計(jì)算月利潤(rùn)增長(zhǎng)百分率?
【點(diǎn)評(píng)】通過學(xué)生討論得出月利潤(rùn)增長(zhǎng)百分率=月增利潤(rùn)/月利潤(rùn)
例8 某商品經(jīng)過兩次降價(jià),每瓶零售價(jià)由56元降為31.5元,已知兩次降價(jià)的百分率相同,求每次降價(jià)的百分率.
分析:若一次降價(jià)百分率為x,則一次降價(jià)后零售價(jià)為原來的'(1-x)倍,即56(1-x);第二次降價(jià)的百分率仍為31.5x,則第二次降價(jià)后零售價(jià)為原來的56(1-x)的(1-x)倍.
解:設(shè)平均降價(jià)百分率為x,根據(jù)題意,得
56(1-x)2=31.5
解這個(gè)方程,得
x 1 = 1.75,x2=0.25
因?yàn)榻祪r(jià)的百分率不可能大于1,所以x1 = 1.75不符合題意,符合題意要求的是x=0.25=25%
答每次降價(jià)百分率為25%.
【跟蹤練習(xí)】
某藥品經(jīng)兩次降價(jià),零售價(jià)降為原來的一半.已知兩次降價(jià)的百分率一樣,求每次降價(jià)的百分率(精確到0.1%).
【友情提示】我們要牢牢把握列方程解決實(shí)際問題的三個(gè)重要環(huán)節(jié):①整體地,系統(tǒng)地審清問題;②把握問題中的等量關(guān)系;③正確求解方程并檢驗(yàn)解的合理性.
。ㄈ⿷(yīng)用遷移,鞏固提高
1.某商品原價(jià)200元,連續(xù)兩次降價(jià)a%后售價(jià)為148元,下列所列方程正確的是( )
。
A)200(1+a%)2=148 (B)200(1-a%)2=148
。–)200(1-2a%)=148 (D)200(1-a2%)=148
2.為綠化家鄉(xiāng),某中學(xué)在20xx年植樹400棵,計(jì)劃到20xx年底,使這三年的植樹總數(shù)達(dá)到1324棵,求此校植樹平均增長(zhǎng)的百分?jǐn)?shù)?
(四)達(dá)標(biāo)測(cè)試
1.某超市一月份的營(yíng)業(yè)額為100萬元,第一季度的營(yíng)業(yè)額共800萬元,如果平均每月增長(zhǎng)率為x,則所列方程應(yīng)為()
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800
2.某地開展植樹造林活動(dòng),兩年內(nèi)植樹面積由30萬畝增加到42萬畝,若設(shè)植樹面積年平均增長(zhǎng)率為,根據(jù)題意列方程.
,一元二次方程的解法
3.某農(nóng)場(chǎng)的糧食產(chǎn)量在兩年內(nèi)從3000噸增加到3630噸,平均每年增產(chǎn)的百分率是多少?
4.某小組計(jì)劃在一季度每月生產(chǎn)100臺(tái)機(jī)器部件,二月份開始每月實(shí)際產(chǎn)量都超過前月的產(chǎn)量,結(jié)果一季度超產(chǎn)20%,求二,三月份平均每月增長(zhǎng)率是多少?(精確到1%)
5.某鋼鐵廠今年一月份的某種鋼產(chǎn)量是5000噸,此后每月比上個(gè)月產(chǎn)量提高的百分?jǐn)?shù)相同,且三月份比二月份的產(chǎn)量多1200噸,求這個(gè)相同的百分?jǐn)?shù)
五、課堂小結(jié)
【一元二次方程教學(xué)設(shè)計(jì)】相關(guān)文章:
《二次函數(shù)與一元二次方程》教學(xué)設(shè)計(jì)與反思07-10
九年級(jí)數(shù)學(xué)公開課《一元二次方程》優(yōu)秀教學(xué)設(shè)計(jì)07-07
一元一次不等式教學(xué)設(shè)計(jì)10-27
《一元一次方程》教學(xué)設(shè)計(jì)02-24
教學(xué)設(shè)計(jì)的設(shè)計(jì)07-17
ai教學(xué)設(shè)計(jì) ai的教學(xué)設(shè)計(jì)05-29