《圓柱的體積》教學(xué)設(shè)計(jì)
作為一名教職工,通常會(huì)被要求編寫教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可使學(xué)生在單位時(shí)間內(nèi)能夠?qū)W到更多的知識(shí)。如何把教學(xué)設(shè)計(jì)做到重點(diǎn)突出呢?以下是小編收集整理的《圓柱的體積》教學(xué)設(shè)計(jì),僅供參考,歡迎大家閱讀。
《圓柱的體積》教學(xué)設(shè)計(jì)1
教學(xué)目標(biāo):
1.結(jié)合實(shí)際,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)過程,培養(yǎng)學(xué)生探究推理能力,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)準(zhǔn)點(diǎn):
掌握圓柱體積公式的推導(dǎo)過程。
教學(xué)設(shè)想:
1.課前互動(dòng),我們做一個(gè)吹氣球的游戲,讓學(xué)生來對(duì)比氣球變大后所占用空間的變化。在熱烈的氣氛中讓學(xué)生感受物體的體積就是物體所占用空間的大小。
2.教學(xué)伊始我創(chuàng)設(shè)學(xué)具槽做圓柱學(xué)具這一睛境,讓學(xué)生感知圓柱體積的概念,再通過讓學(xué)生給這4個(gè)圓柱學(xué)具排序這一問題設(shè)疑,讓學(xué)生明確學(xué)習(xí)目標(biāo)。
3.動(dòng)手實(shí)踐是學(xué)生體驗(yàn)的主要方式,合作交流是學(xué)生體驗(yàn)的有效途徑。所以在教學(xué)中我為圖形轉(zhuǎn)化、猜想推理創(chuàng)設(shè)有助于學(xué)生自主探究的三步曲:第一步:選擇轉(zhuǎn)化的方法。第二步:體驗(yàn)轉(zhuǎn)化的過程、第三步:驗(yàn)證轉(zhuǎn)化的結(jié)果。引導(dǎo)學(xué)生開展觀察、操作、猜想、交流、轉(zhuǎn)化的活動(dòng),讓學(xué)生在數(shù)學(xué)活動(dòng)中經(jīng)歷數(shù)學(xué)、體驗(yàn)數(shù)學(xué)。
4.用字母表示公式已經(jīng)是學(xué)生很熟知的幾何知識(shí),因此我為學(xué)生提供了與圓柱體積有關(guān)的字母,讓他們寫出相應(yīng)的公式并在接下來的環(huán)節(jié)中引導(dǎo)學(xué)生發(fā)現(xiàn)公式與習(xí)題的聯(lián)系,讓他們對(duì)號(hào)入座。學(xué)生根據(jù)不同的公式進(jìn)行計(jì)算,給4個(gè)圓柱學(xué)具排序。這樣可以深入理解不同的條件、不同的方法,同樣可以得到圓柱的體積,在對(duì)比算法中掌握新知。 5.體積和容積這兩個(gè)概念在五年級(jí)已經(jīng)學(xué)過,學(xué)生會(huì)說意義,但是通過了解,學(xué)生并不是真正理解圓柱的體積和容積。所以我在第一次探究中安排了這樣的環(huán)節(jié),讓學(xué)生在學(xué)習(xí)實(shí)踐中區(qū)別圓柱的容積和體積。從形象到抽象建立圓柱的體積概念,符合學(xué)生的認(rèn)知規(guī)律。第二次探究則是加入表面積這一剛剛學(xué)過的內(nèi)容,讓學(xué)生在為3道選擇問題的練習(xí)中達(dá)到區(qū)別體積、容積、表面積的目的,從而實(shí)現(xiàn)學(xué)習(xí)運(yùn)用的最佳狀態(tài)。 6.最后的思維訓(xùn)練是計(jì)算正方體中最大圓柱體的體積,給學(xué)生以生動(dòng)、形象、直觀的認(rèn)識(shí),此題算法多樣,富于啟發(fā)地清晰揭示了知識(shí)的內(nèi)在規(guī)律,使它和教學(xué)過程有機(jī)組合,把學(xué)習(xí)延伸到實(shí)際,讓知識(shí)在體驗(yàn)中生成。
7.由于每個(gè)學(xué)生的知識(shí)經(jīng)驗(yàn)、生活情景、思維方式的不同,對(duì)知識(shí)的學(xué)習(xí)也有獨(dú)特的理解和感受。所以我讓他們用今天的知識(shí)去解決生活中的問題,并寫成數(shù)學(xué)日記,讓他們用自己的方式去體驗(yàn)、探究學(xué)習(xí)過程。
教學(xué)過程:
一、問題導(dǎo)入,質(zhì)疑問難
師:老師這里有兩個(gè)氣球,(師從兜里掏出兩個(gè)氣球,將其中一個(gè)遞給學(xué)生。)你試試把它們變大。(老師再把兩個(gè)氣球放回兜里。)為什么這個(gè)放不回去了?(因?yàn)槠渲幸粋(gè)的體積變大了。)看來它占據(jù)了很大的空間。教室中還有哪些物體占據(jù)空間?
師:這是一個(gè)制作學(xué)具的學(xué)具槽,想一想,它可以做出什么樣的學(xué)具來?
生:圓柱學(xué)具。
師:是的。仔細(xì)觀察,你有什么發(fā)現(xiàn)?
生:圓柱學(xué)具占據(jù)了學(xué)具槽的空間。
師:這就是圓柱學(xué)具的體積。你真善于發(fā)現(xiàn)!能用你的話說說,什么是圓柱的體積嗎?
生:圓柱的體積就是圓柱所占空間的大小。
師:誰來試著給這4個(gè)圓柱學(xué)具按體積從大到小排排序?你來試試。
生:體積大小接近,不能確定。
師:老師聽懂了,無法判斷的原因是不知道圓柱體積的大小,現(xiàn)在我們就來研究圓柱的體積。(師板書。)
二、圖形轉(zhuǎn)化。猜想推理
師:想一想,你有辦法得到這4個(gè)圓柱學(xué)具的體積嗎?(圓柱課件再從槽中跳出。) 生:用公式計(jì)算。 生:用水或沙子轉(zhuǎn)化計(jì)算。 師:你們是怎樣轉(zhuǎn)化的,具體說說。
生:用橡皮泥轉(zhuǎn)化計(jì)算。
生:用圓形紙片疊加計(jì)算……
師:嗯,這些方法都很好,就在今天的課堂你會(huì)選擇哪種方法?
生:因?yàn)闆]有實(shí)驗(yàn)學(xué)具,所以只能用公式計(jì)算。
師:其他的方法可以在課后進(jìn)行。
師:想用公式計(jì)算的同學(xué),你想怎樣推導(dǎo)圓柱的體積公式呢?結(jié)合你們以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),舉例說明。
生:大部分圖形公式的推導(dǎo)都是把新學(xué)的轉(zhuǎn)化為學(xué)過的。例如:圓形可以轉(zhuǎn)化為長方形。
師:聯(lián)系舊知識(shí),采用轉(zhuǎn)化法,確實(shí)不錯(cuò)。 師:那現(xiàn)在它是一個(gè)圓柱,你想怎么辦?
生:像剛才一樣進(jìn)行平均分。
師:你能具體說說嗎?
生:沿著圓柱的底面直徑平均切分成16個(gè)小扇形。
師:都說實(shí)踐出真知,接下來就請同學(xué)們拿出學(xué)具,動(dòng)手嘗試著進(jìn)行轉(zhuǎn)化,并說說轉(zhuǎn)化后的結(jié)果。
生:將圓柱沿底面直徑平均分成16個(gè)小扇形,切分之后,可以拼成一個(gè)近似的長方體。
師:(剛才我們將圓柱沿底面直徑平均分成16個(gè)小扇形,拼成一個(gè)近似的長方體。)如果想讓它更近似于長方體,你想分成多少份?(32)更近似一點(diǎn)。(64)你呢?(128)……
師:這是同學(xué)們剛才的轉(zhuǎn)化過程。
師:打開書,自由讀,用直線標(biāo)記,找出關(guān)鍵詞,依照關(guān)鍵詞自由讀讀轉(zhuǎn)化的過程。
師:現(xiàn)在再請一名同學(xué)到前面來演示轉(zhuǎn)化過程,其他同學(xué)注意觀察,圓柱轉(zhuǎn)化為長方體后什么變了,什么沒變7(圓柱轉(zhuǎn)化為長方體時(shí)形狀變了,但是它們底面積、高和體積都沒變。)
總結(jié)文字公式:長方體體積=底面積×高
圓柱體體積=底面積×高
師:恭喜大家,我們已經(jīng)成功地推導(dǎo)出圓柱的體積公式。(掌聲鼓勵(lì)一下)老師這有一些字母:d、s、r、c、h、v、π。它們與圓柱體體積的計(jì)算公式息息相關(guān),請你們用字母表示出圓柱的體積公式。
生:v=sh v=(d/2)2π×hv=π2×h v=(c÷π/2)2π×h
師:對(duì)比這四個(gè)公式你又有什么新發(fā)現(xiàn)?(彩色粉筆畫線。)
生:相同之處都是底面積乘以高,不同是底面積求法不同。
師:謝謝你精彩的發(fā)現(xiàn),你叫什么名字,認(rèn)識(shí)一下,老師會(huì)記住你的。
三、運(yùn)用公式,解決問題
師:現(xiàn)在我們已經(jīng)知道了圓柱的體積公式,快來解決剛才的實(shí)際問題吧!這是我們要由大到小排序的4個(gè)圓柱學(xué)具,請你們拿出題卡計(jì)算出它們的體積并排序。
1號(hào)底面積50平方厘米,高2.1分米:
2號(hào)直徑是10厘米,高20厘米;
3號(hào)半徑是4厘米,高22厘米;
4號(hào)底面周長31.4厘米,高18厘米。
師:匯報(bào)一下你的計(jì)算和排序結(jié)果,并說說你應(yīng)用了哪個(gè)公式?
師:與他答案相同的同學(xué)舉手示意一下,你是怎樣做的?現(xiàn)在你清楚了嗎?
師:看來,靈活運(yùn)用公式,并選擇合理的算法。會(huì)使我們的學(xué)習(xí)更高效。
四、巧用公式,多重探究
師:同學(xué)們到現(xiàn)在為止,你都學(xué)到了哪些關(guān)于圓柱的知識(shí)?
生:表面積、體積、容積。
師:老師這里有一組習(xí)題。請你們選擇合適的問題。
師:讀完之后,你認(rèn)為求什么就可以大聲地說出來。
(生:體積、容積、表面積。)
學(xué)具廠有一個(gè)制作學(xué)具的圓柱形鐵皮桶。它的底面直徑是22厘米,高是25厘米,_________?從里面量底面直徑是20厘米,高是25厘米______________9底面積是380平方厘米。側(cè)面積是1727平方厘米_________________?
師:說說你選擇問題的根據(jù)是什么?
生:體積是圓柱所占空間的大小。容積是圓柱能容納物體的大小,表面積是圓柱所有面積的總和。
五、開放訓(xùn)練,拓展提升
師:學(xué)習(xí)很愉快,我們來慶祝一下:在一個(gè)棱長為a分米正方體盒中,放一個(gè)最大的圓柱體蛋糕,系上b分米長的絲帶,(打結(jié)部分忽略不計(jì))挖去1根直徑為c厘米,高是d厘米的圓柱蠟燭空隙,這個(gè)蛋糕體積到底是多少呢?這次我們男女生比賽,列式不計(jì)算,看誰解法多并說明解題思路。
《圓柱的體積》教學(xué)設(shè)計(jì)2
教學(xué)目標(biāo):
1.結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
教學(xué)難點(diǎn):讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程掌握圓柱體積的計(jì)算方法。
教學(xué)方法:操作法、推理法、講授法
教學(xué)過程:
一、復(fù)習(xí)引新。
我們以前學(xué)過哪些立體圖形?
生答:長方體和正方體。
它們的體積是怎么求的?
長方體:長×寬×高,正方體:棱長×棱長×棱長。
二、教學(xué)例4。
1、出示長方體和正方體。
它們的底面積相等,高也相等。長方體和正方體的體積相等嗎?為什么?
生答:體積=底面積×高,所以長方體和正方體的體積相等。
2、出示圓柱。
猜一猜,圓柱的體積與長方體和正方體的體積相等嗎?
生猜測:相等。
究竟如何,今天我們就一起來研究圓柱的體積。
板書課題:圓柱的體積。
問:剛才只是你們的猜測,你準(zhǔn)備怎么驗(yàn)證?依據(jù)是什么?(4人小組討論)
生:準(zhǔn)備把圓柱轉(zhuǎn)化成我們以前學(xué)過的立體圖形,來求它的體積。
依據(jù)是圓可以轉(zhuǎn)化成長方形計(jì)算面積。
3、出示課件。
回顧圓的面積計(jì)算公式是怎樣推導(dǎo)的。
4、回顧了圓的面積公式推導(dǎo),你有什么啟發(fā)?
生答:把圓柱轉(zhuǎn)化成長方體計(jì)算體積。
5、動(dòng)手操作。
請2位同學(xué)上臺(tái)用教具來演示,邊演示邊講解。
把圓柱的底面平均分成16份,切開后把它拼成一個(gè)近似地長方體。
多請幾組同學(xué)上臺(tái)講解,完善語言。
提問:為什么用“近似”這個(gè)詞?
6、教師演示課件。
把圓柱拼成了一個(gè)近似的長方體。
7、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會(huì)有什么變化?
生答:拼成的物體越來越接近長方體。
追問:為什么?
生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個(gè)形體就越近似于長方體。
8、剛才我們通過動(dòng)手操作,把圓柱切拼成一個(gè)近似的長方體。
師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學(xué)們進(jìn)行交流?
出示討論題。
1、拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?
2、拼成的長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?
3、拼成的長方體的體積與原來圓柱的體積有什么關(guān)系?為什么?
板書:
長方體體積=底面積×高
圓柱體積=底面積×高
9、根據(jù)上面的實(shí)驗(yàn)和討論,想一想,可以怎樣求圓柱的體積?
生答:把圓柱切拼成一個(gè)近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因?yàn)殚L方體體積=底面積×高,所以圓柱體積=底面積×高。
10、用字母如何表示。
11、出示例4。
現(xiàn)在你知道圓柱的體積與長方體、正方體的體積相等了嗎?
為什么?
生答:體積相等,都是用底面積×高。
V=sh
三、鞏固練習(xí)。
1、出示練習(xí)七第一題。
學(xué)生直接把答案填寫在表中。
提問:你是根據(jù)什么填寫的?
2、練一練。
這兩題,你打算怎么計(jì)算?
生答:不知道底面積,要先算出底面積,再乘高。
3.14×2×5 = 62.8(平方厘米)
3.14×(6÷2)×8 = 226.08(平方厘米)
3、一個(gè)圓柱形狀的糧囤,從里面量得底面周長是12.56米,高是2米。它的容積是多少立方米?
問:這道題和前面做的有什么不同?怎么計(jì)算?
生答:這是求容積的。所以數(shù)據(jù)是從里面量的。
4、練習(xí)七第2題。
觀察下面的3個(gè)杯子,你能看出哪個(gè)杯子的飲料多?
請學(xué)生猜一猜。
請學(xué)生列出三道算式。
。1)3.14×(8÷2)×4
。2)3.14×(6÷2)×7
。3)3.14×(5÷2)×10
問:你能不求出結(jié)果直接比較出大小嗎?
生答:第一個(gè)杯子的飲料多。
5、練習(xí)七第三題。
學(xué)生獨(dú)立解答。
指名說說是怎樣算的?
3.14×3×5×1= 141.3(千克)
141.3千克<150千克
答:這個(gè)保溫茶桶不能盛150千克水。
四、總結(jié)。
今天這節(jié)課你學(xué)到了什么?
《圓柱的體積》教學(xué)設(shè)計(jì)3
教材版本
《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》 (人教版) 六年級(jí)數(shù)學(xué)下冊。
課程標(biāo)準(zhǔn)摘錄
1、結(jié)合具體情境,探索并掌握長方體、正方體、圓柱體的體積和表面積以及圓錐體體積的計(jì)算方法。
2、探索某些實(shí)物體積的測量方法。
學(xué)情與教材分析
“圓柱的體積” 是人教版六年級(jí)下冊“圓柱和圓錐”這一單元的第四節(jié)的內(nèi)容,在學(xué)習(xí)本節(jié)內(nèi)容之前,學(xué)生已經(jīng)認(rèn)識(shí)了圓柱,學(xué)習(xí)了體積,經(jīng)歷了長、正方體的體積推導(dǎo)過程以及圓面積公式的推導(dǎo)過程。在推導(dǎo)圓柱的體積公式時(shí),把圓柱體轉(zhuǎn)化成長方體,高并沒有變,只是把底面的圓形轉(zhuǎn)化成長方形,它的轉(zhuǎn)化過程實(shí)際上和圓轉(zhuǎn)化成長方形求面積的方法相同,學(xué)生已具備有學(xué)習(xí)本課的技能。教學(xué)中不僅要讓學(xué)生知道圓柱體積計(jì)算公式是什么,而且要讓學(xué)生主動(dòng)探索、經(jīng)歷圓柱體體積計(jì)算公式的推導(dǎo)過程,從而體驗(yàn)探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會(huì)學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗(yàn)。
學(xué)習(xí)目標(biāo)
1、經(jīng)歷探究和推導(dǎo)圓柱的體積計(jì)算公式的過程,理解并掌握圓柱體積計(jì)算方法,并能正確計(jì)算圓柱體積,達(dá)標(biāo)率100%。
2、能運(yùn)用圓柱的體積計(jì)算方法,解決有關(guān)的實(shí)際問題,發(fā)展學(xué)生的實(shí)踐能力,達(dá)標(biāo)率95%。
3、能積極參與圓柱體積計(jì)算公式推導(dǎo)活動(dòng),能有條理地、清晰地闡述活動(dòng)過程,發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力,達(dá)標(biāo)率95%。
4、激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)成功的快樂,達(dá)標(biāo)率100%。
5、培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想,達(dá)標(biāo)率95%。
學(xué)習(xí)重點(diǎn)
圓柱的體積計(jì)算方法
學(xué)習(xí)難點(diǎn)
圓柱體積計(jì)算公式的推導(dǎo)。
教具、學(xué)具準(zhǔn)備:
1、師:圓柱體積計(jì)算公式推導(dǎo)教具,課件。
2、生:削好的圓柱體蘿卜或土豆、或圓柱體橡皮泥,小刀。
教學(xué)設(shè)想
本節(jié)課第一個(gè)環(huán)節(jié)激活舊知、引出新知,采用復(fù)習(xí)長方體、正方體的體積公式,圓面積計(jì)算公式的推導(dǎo)過程,從轉(zhuǎn)化的思想、方法上為推導(dǎo)圓柱的體積公式做一些鋪墊。第二個(gè)環(huán)節(jié)自主合作、探索新知,采用了激趣設(shè)疑的方法層層深入,調(diào)動(dòng)同學(xué)們學(xué)習(xí)的熱情,激發(fā)學(xué)生探究的欲望。學(xué)生積極合作交流,主動(dòng)參與到圓柱體積計(jì)算公式的推導(dǎo)過程中,從而體驗(yàn)探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會(huì)學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗(yàn)。然后通過例題教學(xué)加深對(duì)圓柱的體積公式的理解,體會(huì)計(jì)算公式在實(shí)際生活中的應(yīng)用,發(fā)展學(xué)生的實(shí)踐能力。第三個(gè)環(huán)節(jié)鞏固練習(xí)、拓展提高,采用了分層教學(xué)的方法,設(shè)計(jì)的練習(xí)題由易到難,這樣設(shè)計(jì)的目的,是考慮使差生吃得消,中等生吃得好,尖子生吃得飽。通過本節(jié)課的教學(xué),學(xué)生在自主探索和合作交流過程中真正理解和掌握數(shù)學(xué)的知識(shí)與技能、特別是讓學(xué)生獲得數(shù)學(xué)的思想和方法,獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),同時(shí)陶冶了情操。
教法、學(xué)法
演示法、啟發(fā)引導(dǎo);實(shí)驗(yàn)、合作探究、嘗試練習(xí)。
評(píng)價(jià)方案
1、通過小組合作實(shí)驗(yàn)完成活動(dòng)檢測目標(biāo)1、4、5的達(dá)成。
2、通過提問檢測目標(biāo)3、4、5的達(dá)成。
3、通過評(píng)價(jià)樣題檢測目標(biāo)1、2、4的達(dá)成。
評(píng)價(jià)樣題
1、
2、
教學(xué)過程
一、激活舊知,引出新知
1、計(jì)算下面物體的體積
。1)長方體的長20厘米,寬10厘米,高8厘米。
。2)正方體棱6分米
2、回憶一下圓面積的計(jì)算公式是如何推導(dǎo)出來的?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出通過分割、拼合的辦法變成長方形或者平行四邊形,或者三角形,或者梯形來推導(dǎo)出圓的面積。這時(shí)教師要及時(shí)總結(jié)不論是拼成哪種圖形都是把圓轉(zhuǎn)化成已學(xué)過面積計(jì)算的圖形,再根據(jù)轉(zhuǎn)化后的圖形與圓各部分之間的關(guān)系推導(dǎo)出它的面積。]
教師(結(jié)合課件演示)把一個(gè)圓平均分割,再拼合就變成了一個(gè)近似的平行四邊形,分的份數(shù)越多越接近一個(gè)長方形。長方形的長,相當(dāng)于圓周長的一半,長方形的寬相當(dāng)于圓的半徑。因?yàn)殚L方形的面積=長×寬,所以,用圓周長的一半×半徑就可以求出圓的面積,周長一半就等于πR,半徑是R,所以圓的面積是S=πR。
。墼O(shè)計(jì)意圖:從轉(zhuǎn)化的思想、方法上為推導(dǎo)圓柱的體積公式做一些鋪墊。]
3、什么叫體積?如何求長方體的體積?如何求正方體的體積?長方體和正方體的通用公式是什么?
[設(shè)計(jì)意圖:為定義圓柱體的體積,為推導(dǎo)圓柱體的體積公式做知識(shí)上的鋪墊。]
板書:長方體的體積=底面積×高.
[設(shè)計(jì)意圖:原有的基礎(chǔ)是后續(xù)學(xué)習(xí)的前提和起點(diǎn),新知總是在舊知的基礎(chǔ)上生長發(fā)展的。這種承上啟下的關(guān)系決定了我們的教學(xué)必須從學(xué)生原有的認(rèn)知結(jié)構(gòu)出發(fā),找準(zhǔn)新舊知識(shí)的連接點(diǎn),為新課的學(xué)習(xí)做好思想方法與知識(shí)的鋪墊。]
圓柱體也有體積,說一說什么是圓柱的體積?學(xué)生交流后匯報(bào)。
板書:圓柱體所占空間的大小叫做圓柱的體積。
師:這節(jié)課,我們就來學(xué)習(xí)圓柱的體積.(板書課題:圓柱的體積)
二、自主合作,探索新知
1.求圓柱體容器中水的體積
出示長方體容器:問,這是什么?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出長方體容器。]
問:怎么求長方體容器中水的體積呢?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出量出它所容納水的長、寬、高,就可以求出水的體積。] 問:如果換成圓柱體容器又如何求其中水的體積呢?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出,把圓柱體容器中的水倒入長方體容器,量出長方體容器所容納水的長、寬、高,就可以求出圓柱體容器中水的體積。](演示:把圓柱體容器中的水倒入長方體容器)
2.橡皮泥圓柱體的體積
(出示橡皮泥做成的圓柱體)
問:這是一個(gè)什么樣的立體圖形?
問:它是用橡皮泥做成的。你能想辦法求出它的體積嗎?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出把這個(gè)圓柱體捏成一個(gè)長方體,從而量出長方體的長、寬、高,求出這個(gè)圓柱的體積。]
3.常用圓柱的體積.
課件出示圓柱體壓路機(jī)的滾筒的圖片。
問:壓路機(jī)的滾筒是一個(gè)很大的的圓柱體,你又如何求出它的體積呢?
。墼O(shè)計(jì)意圖:用圓柱體容器所盛的沒有形狀的水到可以變形的圓柱形橡皮泥,這些都可以轉(zhuǎn)化的辦法轉(zhuǎn)化為長方體來求出體積,這一過程就是要逐步滲透把圓柱體轉(zhuǎn)化為長方體的方法和思想,這樣從思想上、方法上給學(xué)生一個(gè)思維的臺(tái)階。當(dāng)出示圓柱體壓路機(jī)的滾筒圖片后,由于前面的物體是可以變形的,而壓路機(jī)的滾筒是不可以變形的,學(xué)生想不出解決的辦法,學(xué)生處于憤悱狀態(tài),對(duì)學(xué)生來說解決求壓路機(jī)的滾筒體積具有很強(qiáng)的挑戰(zhàn)性,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性。這樣設(shè)計(jì),為后面同學(xué)們操作、討論推導(dǎo)圓柱的體積從思想方法上作了進(jìn)一步的鋪墊,并通過構(gòu)造認(rèn)知沖突,層層深入,調(diào)動(dòng)同學(xué)們學(xué)習(xí)的熱情,激發(fā)學(xué)生探求的欲望。這樣,對(duì)學(xué)生思想方法的鋪墊也已水到渠成。]
小結(jié):看來我們以上的方法求圓柱的體積有它的局限性,所以必須探究求圓柱體積的一般規(guī)律。
4.探究規(guī)律
問:圓我們可以通過分割、拼合轉(zhuǎn)化成已學(xué)過的長方形面積計(jì)算公式的圖形推導(dǎo)出圓的面積,圓柱體能不能也轉(zhuǎn)化成已學(xué)過體積的圖形來求出它的體積呢?下面請四人小組討論,圍繞下面幾個(gè)問題進(jìn)行討論、操作:
課件出示操作討論提綱:
。1)圓柱體可以轉(zhuǎn)化為什么樣的立體圖形?
(2)轉(zhuǎn)化后的立體圖形體積與圓柱的體積大小是否有變化?
。3)轉(zhuǎn)化后的形體與與原來圓柱體各部分間的對(duì)應(yīng)關(guān)系,推導(dǎo)出圓柱的體積。
學(xué)生討論,教師參與小組討論、點(diǎn)撥、操作。
問:下面哪個(gè)小組來先進(jìn)行匯報(bào)。
各組派代表邊匯報(bào)邊演示。
。蹖W(xué)情預(yù)設(shè):學(xué)生可能會(huì)說圓柱體可以轉(zhuǎn)化為長方體,轉(zhuǎn)化后的長方體不是標(biāo)準(zhǔn)的長方體,只有把圓柱分割的份數(shù)多一些,才可以拼成一個(gè)標(biāo)準(zhǔn)的長方體。因?yàn)殚L方體是由圓柱體轉(zhuǎn)化而成的,在轉(zhuǎn)化的過程中,體積既沒有增加,也沒有減少,說明求出了轉(zhuǎn)化后長方體的體積,也就相當(dāng)于求出了圓柱體的體積。長方體的體積等于圓柱體的體積,長方體的底面積等于圓柱的底面積,長方體的高相當(dāng)于圓柱體的高。因?yàn)殚L方體的體積=底面積×高,所以,圓柱體的體積=底面積×高。]
問:誰還有補(bǔ)充?(學(xué)生補(bǔ)充講解)
教師拿兩個(gè)相同的圓柱體體積演示模型演示,邊演示邊講解。
師:同學(xué)們看,老師這里有兩個(gè)圓柱體,它們的底相同,高也完全相同,這是兩個(gè)完全相同的圓柱體。我把其中的一個(gè)沿著它的底面直徑剪開,兩等分、四等分、八等分、十六等分,還可以繼續(xù)分割,通過分割、拼合,把圓柱體轉(zhuǎn)化成近似的長方體,如果我把它分割的份數(shù)越多,拼成的圖形就越接近長方體。因?yàn)殚L方體是由圓柱體轉(zhuǎn)化而成的,在轉(zhuǎn)化的過程中,體積既沒有增加,也沒有減少,說明求出了轉(zhuǎn)化后長方體的體積,也就相當(dāng)于求出了圓柱體的體積。
結(jié)合課件演示講解。
師:長方體的體積等于圓柱體的體積,長方體的底面積等于圓柱的底面積,長方體的高相當(dāng)于圓柱體的高。因?yàn)殚L方體的體積=底面積×高,所以,圓柱體的體積=底面積×高。
師:如果圓柱的體積用V來表示,底面積用S表示,高用h來表示。如何表示圓柱的體積計(jì)算公式呢?(板書:V=Sh)
〔設(shè)計(jì)意圖:學(xué)生合作交流,自主探索、經(jīng)歷圓柱體體積計(jì)算公式的推導(dǎo)過程,理解和掌握了計(jì)算方法,加深了印象,從而體驗(yàn)探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會(huì)學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗(yàn)。達(dá)成目標(biāo)1、3、4、5.〕
5、實(shí)際應(yīng)用
。1)、師:給你圓柱的底面積和高,你會(huì)求圓柱的體積嗎?
例1、一根圓柱形木料,底面積75平方厘米,高是90厘米,它的體積是多少? 學(xué)生獨(dú)立完成,集體反饋矯正,說思路。
。2)、完成評(píng)價(jià)樣題
〔設(shè)計(jì)意圖:通過嘗試練習(xí)加深對(duì)圓柱的體積公式的理解,體會(huì)計(jì)算公式在實(shí)際生活中的應(yīng)用,發(fā)展學(xué)生的實(shí)踐能力。達(dá)成目標(biāo)2、4. 〕
三、鞏固練習(xí),拓展提高
1、應(yīng)用公式進(jìn)行口算:
2、
3、
。墼O(shè)計(jì)意圖:第一層次是已知底面積和高求圓柱體積的口算題,面向全體學(xué)生;第二個(gè)層次是已知底面半徑和高、底面直徑和高、底面周長和高,求體積的三種練習(xí)題,面向全體學(xué)生;第三個(gè)層次是求放入水中物體的體積就是求上升的圓柱形水的體積,面向中上層學(xué)生。這樣設(shè)計(jì)的目的,是考慮使差生吃得消,中等生吃得好,尖子生吃得飽。在做練習(xí)過程中,一、二層次的練習(xí)板演盡量讓學(xué)困生和中等生去做,給他們展示自己的機(jī)會(huì)。并及時(shí)了解學(xué)生信息并根據(jù)學(xué)生反饋及時(shí)調(diào)整教學(xué)進(jìn)程,同時(shí)對(duì)學(xué)生存在的問題及時(shí)指導(dǎo)。達(dá)成目標(biāo)2、4. ]
四、全課總結(jié),共談收獲
通過今天的學(xué)習(xí),你有什么收獲?
。墼O(shè)計(jì)意圖:師生共同小結(jié),學(xué)會(huì)了什么?怎樣求圓柱的體積?這樣起到強(qiáng)化重點(diǎn)的目的。]
五、課外創(chuàng)新,拓展延伸
長方體可以這樣放(上、下面朝下),還可以這樣放(左、右面朝下),還可哪樣放(前、后面朝下)。 上、下面朝下時(shí)求出圓柱的體積=底面積×高,圓柱的體積還有沒
《圓柱的體積》教學(xué)設(shè)計(jì)4
教材簡析:
本節(jié)內(nèi)容包括圓柱的體積計(jì)算公式的推導(dǎo),利用公式直接計(jì)算圓柱的體積,利用公式求:圓柱形物體的容積,第十一冊圓柱的體積公開課。教材充分利用學(xué)生學(xué)過的知識(shí)作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個(gè)圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計(jì)算公式。
教學(xué)目的:
1、運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計(jì)算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計(jì)算公式,并理解這個(gè)過程。
2.會(huì)用圓柱的體積計(jì)算圓柱形物體的體積和容積,運(yùn)用公式解決一些簡單的問題。
3.引導(dǎo)學(xué)生逐步學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問題的能力
4.借助實(shí)物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
教 具:圓柱的體積公式演示教具,多媒體課件
教學(xué)過程:
一、情景引入
1、出示圓柱形水杯。
。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學(xué)過的方法計(jì)算出這些水的體積嗎?
。3)討論后匯報(bào):把水倒入長方體容器中,量出數(shù)據(jù)后再計(jì)算。(4)說一說長方體體積的計(jì)算公式。
2、創(chuàng)設(shè)問題情景。(課件顯示)
如果要求壓路機(jī)圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時(shí)候,有沒有像求長方體或正方體體積那樣的計(jì)算公式呢?
今天,我們就來一起研究圓柱體積的計(jì)算方法。(出示課題:圓柱的體積)(設(shè)計(jì)意圖:問題是思維的動(dòng)力。通過創(chuàng)設(shè)問題情景,可以引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,積極思考,去探索和解決實(shí)際問題,并能制造認(rèn)知沖突,形成"任務(wù)驅(qū)動(dòng)"的探究氛圍。)
二、新課教學(xué):
設(shè)疑揭題:我們能把一個(gè)圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計(jì)算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個(gè)學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個(gè)問題。板書課題:圓柱的體積。
1.探究推導(dǎo)圓柱的體積計(jì)算公式。
課件演示拼、組的過程,同時(shí)演示一組動(dòng)畫(將圓柱底面等分成32份、64份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個(gè)問題。①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積) ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)
討論并得出結(jié)果。你能根據(jù)這個(gè)實(shí)驗(yàn)得出圓柱的體積計(jì)算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的 體。這個(gè)長方體的底面積與圓柱體的底面積 ,這個(gè)長方體的高與圓柱體的高 。因?yàn)殚L方體的體積等于底面積乘以高,所以,圓柱體的體積計(jì)算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設(shè)計(jì)意圖:在新課教學(xué)中,先讓學(xué)生通過復(fù)習(xí)舊知識(shí),在觀察中理解,在比較中歸納,通過這些措施可以使學(xué)生切實(shí)經(jīng)歷圓柱體積公式充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用,小學(xué)數(shù)學(xué)教案《第十一冊圓柱的體積公開課》。這樣的教學(xué),不僅有利于學(xué)生理解算理,掌握算法,而且在公式的推導(dǎo)過程中,領(lǐng)悟了學(xué)習(xí)方法,培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力)
要用這個(gè)公式計(jì)算圓柱的體積必須知道什么條件?
填表:請同學(xué)看屏幕回答下面問題,
底面積(㎡)高(m)圓柱體積(m3)
63
0.58
52
(設(shè)計(jì)意圖:設(shè)計(jì)練習(xí)能使學(xué)生達(dá)到舉一反三的效果,從而訓(xùn)練學(xué)生的技能。這是第一層基本練習(xí),通過這道題可以使學(xué)生更好的掌握本課重點(diǎn),夯實(shí)基礎(chǔ)知)
例:一個(gè)圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米.它的容積約是多少立方分米?(得數(shù)保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容積約是198立方分
(設(shè)計(jì)意圖:使學(xué)生注意解題格式,注意體積的單位為三次方)
三.鞏固反饋
1.求下面圓柱體的體積。(單位:厘米)
同學(xué)板演,其余同學(xué)在作業(yè)本上做。板演的同學(xué)講解自己的解題方法題,教師歸納學(xué)生所用的解題方法,強(qiáng)調(diào)在解題的過程中格式。(設(shè)計(jì)意圖:這是第二層變式練習(xí)。是讓學(xué)生在掌握公式的基礎(chǔ)上理解公式,學(xué)會(huì)靈活運(yùn)用公式的訓(xùn)練題。通過對(duì)公式的拓展性理解,可以進(jìn)一步加深學(xué)生對(duì)圓柱體積公式的理解和掌握,同時(shí)也能培養(yǎng)學(xué)生的邏輯思維能力。)
練習(xí):(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm.已知水杯中水的體積是整個(gè)水杯體積的 2/3 計(jì)算水杯中水的體積?
(設(shè)計(jì)意圖:這是第三層發(fā)展性練習(xí),安排了密切聯(lián)系生活實(shí)際的習(xí)題,讓學(xué)生運(yùn)用公式解決引入環(huán)節(jié)中的兩個(gè)問題,切實(shí)體驗(yàn)到數(shù)學(xué)就存在于自己的身邊。)
四.拓展練習(xí)
1.一個(gè)長方形的紙片長是6分米,寬4分米.用它分別圍成兩個(gè)圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計(jì)算說明理由.(結(jié)果保留π)
2.一個(gè)底面直徑是20cm的圓柱形容體里,放進(jìn)一個(gè)不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、
。ㄔO(shè)計(jì)意圖:安排了密切聯(lián)系生活實(shí)際的習(xí)題,讓學(xué)生運(yùn)用公式解決引入環(huán)節(jié)中的兩個(gè)問題,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)的價(jià)值體驗(yàn)到數(shù)學(xué)對(duì)于了解周圍世界和解決實(shí)際問題是非常有作用的;能使學(xué)生的思維處于積極的狀態(tài)達(dá)到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的。)
五.課堂小結(jié):
1.談?wù)勥@節(jié)課你有哪些收獲。
2.解題時(shí)需要注意那些方面。
。ㄔO(shè)計(jì)意圖:收獲包括知識(shí)、能力、方法、情感等全方位的體會(huì),在這里采用提問式小結(jié),使學(xué)生暢談收獲、發(fā)現(xiàn)不足,既能訓(xùn)練學(xué)生的語言表達(dá)能力,又能培養(yǎng)學(xué)生的歸納概括能力;同時(shí)通過對(duì)本節(jié)所學(xué)知識(shí)的總結(jié)與回顧,還能使學(xué)生學(xué)到的知識(shí)系統(tǒng)化、完整化。)
六.布置作業(yè)
1.A冊習(xí)題2.7
2.拓展練習(xí)2題
教學(xué)反思:
本節(jié)課的教學(xué)體現(xiàn)了:一、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;二、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動(dòng)多種感觀參與學(xué)習(xí);三、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識(shí)的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果,不足處學(xué)生討論時(shí)間控制太少,課后作業(yè)個(gè)別學(xué)生還是對(duì)公式不會(huì)靈活應(yīng)用。
《圓柱的體積》教學(xué)設(shè)計(jì)5
評(píng)價(jià)樣題:
學(xué)習(xí)流程:
一、創(chuàng)設(shè)現(xiàn)實(shí)情境,增強(qiáng)探究欲望。
1、出示橡皮泥做的圓柱體:怎樣求出這個(gè)圓柱體橡皮泥的體積?你能想出幾種辦法?
如果要求(出示百家姓廣場上的圓柱形大鼎底座圖片)圓柱形大鼎底座的體積,還能用剛才那樣的方法嗎?那怎么辦?(學(xué)生試說出自己的辦法。)
看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個(gè)解決任意圓柱體積的方法才行,對(duì)嗎?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、親歷建構(gòu)過程,提高探索能力。
1、提出問題,大膽猜想
你能猜一猜圓柱的體積怎樣計(jì)算嗎?你覺得圓柱體積的大小和什么有關(guān)?
(鼓勵(lì)學(xué)生大膽猜測,說出自己的想法)
2、回顧舊知,幫助遷移
同學(xué)們都很會(huì)大膽猜想,但還要小心地論證猜想的科學(xué)性。你還記得圓面積轉(zhuǎn)化什么圖形的面積來求它的公式的嗎?
。ㄑ菔菊n件:圓轉(zhuǎn)化成長方形)
3、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學(xué)過的立體圖形來計(jì)算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?
4、小組合作,驗(yàn)證猜想
下面請大家四人一組,借助手中的學(xué)具或用蘿卜和土豆做成的圓柱分組進(jìn)行探討。
。ǔ鍪竞献魈峋V)小組長做好分工,并完成記錄表。
活動(dòng)記錄表
思考:
1、圓柱體可以轉(zhuǎn)化成哪種立體圖形?
2、兩種立體圖形之間有怎樣的聯(lián)系?你們發(fā)現(xiàn)了什么?得出了什么結(jié)論?
3、怎樣用簡捷的形式表示你推導(dǎo)出來的公式呢?
活動(dòng)過程:
1、我們用方法,把圓柱體轉(zhuǎn)化成了體。
2、在這個(gè)轉(zhuǎn)化的過程中,變了,沒有變。
3、通過觀察比較,我們發(fā)現(xiàn):把一個(gè)圓柱體的底面分成許多相等的扇形,然后切、拼,就能得到一個(gè)近似的長方體。這個(gè)長方體的底面積等于圓柱體的(),高就是圓柱體的()。因?yàn),長方體體積=(),所以,圓柱體的體積計(jì)算公式是v=()。
5、全班交流,展示評(píng)價(jià)。
評(píng)價(jià)交流中,借助評(píng)價(jià)樣題。同時(shí)課件演示切拼的過程,同時(shí)演示將圓柱底面等分成32份、64份……,讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。 6、根據(jù)學(xué)生的發(fā)現(xiàn)引導(dǎo)學(xué)生推導(dǎo)出:
圓柱的體積=底面積×高,
用字母表示v = sh。
7、反饋練習(xí)。
。1)要求圓柱體積,必須知道哪些條件?
(2)出示例5,學(xué)生借助圓柱體積公式自主完成,并及時(shí)訂正反饋。
圓柱的體積教學(xué)設(shè)計(jì) 相關(guān)內(nèi)容:用轉(zhuǎn)化的策略解決分?jǐn)?shù)問題“長方體和正方體的表面積”的教學(xué)實(shí)錄小學(xué)數(shù)學(xué)《倒數(shù)的認(rèn)識(shí)》教案北師大版6年級(jí)數(shù)學(xué)第11冊第1單元《圓的認(rèn)識(shí)》教案1、分?jǐn)?shù)四則混合運(yùn)算《按比例分配》課后反思百分?jǐn)?shù)的意義和讀寫法反思百分?jǐn)?shù)(三)用百分?jǐn)?shù)解決問題查看更多>>小學(xué)六年級(jí)數(shù)學(xué)教案
《圓柱的體積》教學(xué)設(shè)計(jì)6
教學(xué)內(nèi)容:
人教版《九年義務(wù)教育六年制小學(xué)數(shù)學(xué)》(第十二冊)圓柱體積
教學(xué)目標(biāo):
1、結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3、通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積計(jì)算公式的推導(dǎo)過程
教學(xué)過程
一、情景引入
1、教學(xué)開始首先出示了一個(gè)裝了半杯水的燒杯,然后拿出一個(gè)圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:會(huì)發(fā)生什么情況?由這個(gè)發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
。ㄔO(shè)計(jì)意圖:在這個(gè)環(huán)節(jié)設(shè)計(jì)觀察活動(dòng),意圖是讓學(xué)生通過觀察自主得出圓柱體積的定義,進(jìn)一步加深對(duì)體積概念的理解,并為下面的探究活動(dòng)提供研究方法。)
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)、先出示了兩個(gè)大小不等的圓柱體讓學(xué)生判斷哪個(gè)體積大?
。2)、提問:“要比較兩個(gè)圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個(gè)水面升得高。
(3)、讓學(xué)生運(yùn)用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積.
。4)、學(xué)生通過動(dòng)手操作匯報(bào)結(jié)論:當(dāng)?shù)椎葧r(shí),圓柱越高體積越大;當(dāng)高等時(shí),圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
。ㄔO(shè)計(jì)意圖:本環(huán)節(jié)教學(xué)讓學(xué)生根據(jù)已有的知識(shí)解決簡單的問題,通過探究活動(dòng),引導(dǎo)學(xué)生找出決定圓柱體積的兩個(gè)因素,為學(xué)習(xí)新知識(shí)作鋪墊,同時(shí)也發(fā)展了學(xué)生的抽象概括能力。)
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
。1)、再次設(shè)疑:如果要準(zhǔn)確的知道哪個(gè)圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計(jì)算圓柱的體積。
(2)、引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
。3)、讓學(xué)生思考:怎樣計(jì)算圓柱的體積呢,依據(jù)學(xué)過的知識(shí),你可以做出怎樣的假設(shè)?
。4)、學(xué)生小組討論交流并匯報(bào):圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個(gè)近似長方體;圓柱的體積可能也是用底面積乘高來計(jì)算。
。ㄔO(shè)計(jì)意圖:通過設(shè)疑使學(xué)生認(rèn)識(shí)到學(xué)習(xí)圓柱體積公式的必要性,激發(fā)學(xué)生的探究興趣。接著通過設(shè)計(jì)猜想的過程,充分運(yùn)用學(xué)生已有的知識(shí)經(jīng)驗(yàn),讓學(xué)生回憶了學(xué)習(xí)長方體體積時(shí)的實(shí)踐方法和將圓形轉(zhuǎn)化成長方形的過程,學(xué)生在如此豐富的知識(shí)經(jīng)驗(yàn)基礎(chǔ)上就做到了心中有數(shù),猜想的膽量就更大,假想的合理性就更強(qiáng)。)
4、確定方法,探究實(shí)驗(yàn),推導(dǎo)公式。
(1)、思考你發(fā)現(xiàn)了什么?
。5)、學(xué)生匯報(bào):實(shí)驗(yàn)的結(jié)果與猜想的結(jié)果基本相同。
。6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實(shí)可以像計(jì)算長方體體積那樣,用底面積乘以高。(課件出示)
。7)、小結(jié):要想求出一個(gè)圓柱的體積,需要知道什么條件?
。8)、學(xué)生自學(xué)第17頁例4上面的一段話:用字母表示公式。
《圓柱的體積》教學(xué)設(shè)計(jì)7
一、教學(xué)對(duì)象及學(xué)習(xí)內(nèi)容特點(diǎn)分析:
圓柱的體積是小學(xué)立體幾何圖形中的重要內(nèi)容之一,是已學(xué)的長方體知識(shí)和將學(xué)的圓椎體知識(shí)的橋梁,其公式是長方體、正方體體積公式V=Sh的延續(xù)。
二、教學(xué)目的:
學(xué)生能借助媒體提供的資源理解和掌握圓柱體積的計(jì)算公式。
學(xué)生能應(yīng)用圓柱體積公式進(jìn)行圓柱體積的計(jì)算。
學(xué)生能利用知識(shí)之間相互"轉(zhuǎn)化"的思想探索解決新的問題。
三、教學(xué)基本指導(dǎo)思想、教學(xué)策略和方法:整個(gè)過程,充分利用計(jì)算機(jī)的優(yōu)點(diǎn),以小組學(xué)習(xí)的形式,發(fā)揮學(xué)生的主體作用,教師是學(xué)生學(xué)習(xí)過程的組織者和輔導(dǎo)者。長方體的體積公式和平面圖形的面積公式已學(xué)過,因此引導(dǎo)學(xué)生用轉(zhuǎn)化的思想去學(xué)習(xí),并創(chuàng)設(shè)情景,讓學(xué)生自己發(fā)現(xiàn)問題,利用電腦、課本、實(shí)物提供的資源協(xié)商解決問題,使全體學(xué)生都成為學(xué)習(xí)的主人。
四、教學(xué)運(yùn)用的主要手段、技術(shù)、材料:電腦網(wǎng)絡(luò)、實(shí)物投影、圓柱體。
五、教學(xué)過程的設(shè)想和點(diǎn)評(píng)
教師的教學(xué)行為學(xué)生的學(xué)習(xí)行為點(diǎn)評(píng)
第一階段:創(chuàng)設(shè)情景,設(shè)疑引趣。
教師故事引入:圓柱形狀的"轉(zhuǎn)筆刀"和"漿糊筆"迎著朝陽高高興興上學(xué)了,走著走著,它們就為哪個(gè)體積大而爭論起來,"轉(zhuǎn)筆刀"很自信地說:"看我這么胖,肯定是我的體積大!""漿糊筆"很不服氣地說:"我比你高多了,一定是我的體積大!"就這樣你一言我一語,爭論了很久還沒個(gè)結(jié)果。
提問:小組討論尋找解決這兩個(gè)圓柱體積大小的方法。
1、學(xué)生小組討論解決的方法。
2、小結(jié)歸納:解決圓柱的體積的方法:尋找一種方法,導(dǎo)出圓柱的體積公式,然后應(yīng)用公式求圓柱的體積。
通過情景的創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習(xí)熱情,讓他們發(fā)現(xiàn)問題,并通過討論找出解決的方法,使學(xué)生從被動(dòng)學(xué)習(xí)變?yōu)橹鲃?dòng)學(xué)習(xí),學(xué)生對(duì)這節(jié)課的學(xué)習(xí)也從宏觀上得到了解。學(xué)生解決問題的方法有出人意料的回答,老師根據(jù)情況,給予恰當(dāng)?shù)墓膭?lì)性的評(píng)價(jià),以激發(fā)學(xué)生的思維。
第二階段: 自主探究。概括規(guī)律
1、電腦提供學(xué)生探索資源:
。1)平面圖形(長方形、正方形、平行四邊形、三角形、梯形、圓形)面積公式和立體圖形(長方體、正方體)體積公式的導(dǎo)出過程。
。2)把圓柱的底面分成許多相等的扇形,然后把圓柱切開,拼成一個(gè)近似的長方體。
2、學(xué)生反饋?zhàn)詫W(xué)內(nèi)容,師生共同導(dǎo)出圓柱的體積公式V=Sh1、學(xué)生打開電腦"自能學(xué)習(xí)"中的"尋方法",有選擇地看學(xué)過的平面圖形的面積公式和立體圖形體積公式的導(dǎo)出過程,從中找到推導(dǎo)圓柱體積公式的方法
2、學(xué)生通過觀察圓柱公式的推導(dǎo)過程。
3、小組討論填寫實(shí)驗(yàn)報(bào)告。
4、師生導(dǎo)出圓柱的體積公式后,學(xué)生自學(xué)課本例題,并完成例4內(nèi)容。通過利用資源、自能學(xué)習(xí),讓全體學(xué)生都能動(dòng)腦、動(dòng)口、動(dòng)手參與到學(xué)習(xí)中去,使學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)協(xié)作,所學(xué)知識(shí)的理解更為深刻、透徹。在自學(xué)的過程中教師通過監(jiān)控密切觀察著學(xué)生的學(xué)習(xí)情況,發(fā)現(xiàn)問題及時(shí)解決。
圓柱體積公式的推導(dǎo)過程,學(xué)生會(huì)有不同的方法,如用課本的方法或用類比的方法,教師應(yīng)給予恰當(dāng)?shù)脑u(píng)價(jià)。
第三階段:拓展公式,自能訓(xùn)練。
1、公式拓展。
在日常生活中,圓柱的底面積通常沒有直接給出,那么我們通過什么條件也能求出圓柱的底面積呢?
2、教師小結(jié):無論已知圓柱的底面半徑、直徑還是底面周長,我們都必須根據(jù)V=Sh,先求出圓柱的底面積,然后乘以高才能求出圓柱的體積。
3、質(zhì)疑
1、學(xué)生可根據(jù)已學(xué)的"圓的面積"公式導(dǎo)出。
(當(dāng)已知圓柱底面的半徑時(shí)V=∏r2h、當(dāng)已知直徑時(shí)V=∏(d÷2)2h、當(dāng)已知周長時(shí),先求半徑,再求底面積,然后求圓柱體積。
2、判斷。并說明原因
(1) 一個(gè)圓柱體的底面積是8平方厘米,高是6厘米,這個(gè)圓柱體的體積是48立方厘米。
。2) 一個(gè)圓柱的'底面積是10平方米,高是10米,它的體積是100平方米。
。3) 一個(gè)圓柱體鐵罐,底面直徑是2米,高是3米,求它的體積。 列式是:3.14×22×3
1、根據(jù)生活實(shí)際,當(dāng)知道圓柱底面半徑、直徑或周長時(shí),怎樣求圓柱的體積這個(gè)問題,可以讓學(xué)生充分拓展思維,不要停留在只會(huì)死記公式、生搬硬套的低層次上。并大力鼓勵(lì)、表揚(yáng)愛動(dòng)腦筋的同學(xué)
2、通過練習(xí),學(xué)生對(duì)基本知識(shí)有一定的理解,教師也了解了學(xué)生對(duì)知識(shí)的掌握情況。
第四階段:反饋學(xué)習(xí)、應(yīng)用提高。
1、提出練習(xí)要求:先做"鞏固"練習(xí),有余力的再做"提高"練習(xí)。
2、小結(jié)練習(xí)情況,及時(shí)表揚(yáng)對(duì)而快的同學(xué)及小組
3、回應(yīng)開頭,解決"漿糊筆"和"轉(zhuǎn)筆刀"爭論的問題。學(xué)生在電腦上完成。
1、賽車游戲:看誰跑得快。
。1)圓柱的底面積是15平方米,高是3米,體積是( )立方米。
。2)已知圓柱的高是20厘米,底面積100平方厘米,圓柱的體積是( )平方厘米。
(3)一個(gè)圓柱形的糧囤,從里面量底面半徑是2米,高是2.5米。這個(gè)糧囤能裝稻谷( )立方米。
。4)一個(gè)圓柱的體積是80立方分米,底面積是16平方分米,它的高是( )分米。
2、提高練習(xí)?寄阒腔郏嚎凑l攀得高。
。1)一個(gè)圓柱,它的底面直徑4厘米,高是3米,體積是( )立方厘米。
。2)一個(gè)圓柱體鐵架,它的底面周長是62.8分米,高是6分米,它的體積是( )立方分米。
在計(jì)算過程中,學(xué)生會(huì)遇到不少問題,可通過師生交流或小組互相幫助解決,從而實(shí)現(xiàn)互幫、互學(xué)共同提高。
六、歸納總結(jié)、自我評(píng)價(jià)。
1、提出要求,學(xué)生談收獲。
2、總結(jié)本節(jié)情況。 談收獲,并作出自我評(píng)價(jià)。通過談收獲,體現(xiàn)學(xué)習(xí)的自主性,體驗(yàn)獲得成功的樂趣。
七、對(duì)教學(xué)過程的設(shè)想和點(diǎn)評(píng):
新課程標(biāo)準(zhǔn)注重小學(xué)生對(duì)周圍世界與生俱來的探究興趣和需要,在小學(xué)階段,學(xué)生的知識(shí)積累與思維能力較為有限,強(qiáng)調(diào)用符合小學(xué)生年齡特點(diǎn)的方式學(xué)習(xí),提倡課程貼近小學(xué)生的生活,這節(jié)課從學(xué)生身邊學(xué)習(xí)用品"卷筆刀"和"漿糊筆"的入手,通過擬人的方式,由它們上學(xué)過程中引起的爭論導(dǎo)出學(xué)習(xí)的內(nèi)容,激發(fā)學(xué)生學(xué)習(xí)的積極性。這樣在教學(xué)進(jìn)程中安排好相關(guān)的情景組織學(xué)生參與其中,親歷過程,自主地開展活動(dòng),通過看、做、玩、想等方式,讓學(xué)生既學(xué)會(huì)知識(shí)與技能,又培養(yǎng)智能、情感態(tài)度與價(jià)值觀,促進(jìn)學(xué)生科學(xué)素養(yǎng)的形成。
新課標(biāo)還積極倡導(dǎo)讓學(xué)生親身經(jīng)歷以探究為主的學(xué)習(xí)活動(dòng),培養(yǎng)他們的好奇心和探究欲,使他們學(xué)會(huì)探究解決問題的策略,為他們終身的學(xué)習(xí)和生活打好基礎(chǔ)。這是一節(jié)在網(wǎng)絡(luò)環(huán)境下開展的探究型數(shù)學(xué)課,引入后,教師則大膽放手,營造了一個(gè)開放的探究空間,通過學(xué)生小組討論尋找比較圓柱大小的方法,引導(dǎo)學(xué)生通過自主、合作探究這種學(xué)習(xí)方式進(jìn)行實(shí)踐活動(dòng),觀察由圓柱轉(zhuǎn)變成已學(xué)過長方體的過程,在觀察中相互啟發(fā),共同提高,形成共識(shí)后并加以記錄。再將大家的記錄結(jié)果對(duì)比、討論、從而得出結(jié)論:圓柱的體積=轉(zhuǎn)變成的長方體的體積,從而導(dǎo)出圓柱的體積公式V=SH。在這一過程中,教師以學(xué)生的發(fā)展為本,關(guān)注每一位的發(fā)展,珍視每位學(xué)生的探究體驗(yàn)及獨(dú)特見解,在學(xué)生探究結(jié)果的表述過程中,對(duì)同一個(gè)問題,不同的人可以得出不同的結(jié)論,他們通過互相交流互相討論,思維更是得到發(fā)展與創(chuàng)新。不僅激發(fā)了每一位學(xué)生主動(dòng)參與探究實(shí)踐活動(dòng),更讓學(xué)生在探究中學(xué)會(huì)合作、懂得思考、大膽發(fā)表自己的獨(dú)特見解,更學(xué)會(huì)傾聽、尊重他人的意見,從而實(shí)現(xiàn)互幫、互學(xué)共同提高,并在探究中發(fā)現(xiàn)、學(xué)習(xí),激發(fā)學(xué)生學(xué)習(xí)的興趣,培養(yǎng)了實(shí)踐的能力。
網(wǎng)絡(luò)環(huán)境下的教學(xué)方式不僅改變了以往教師滿堂灌的現(xiàn)象,在拓寬學(xué)生知識(shí)面的同時(shí),更培養(yǎng)了學(xué)生搜集信息、處理信息并進(jìn)行合理解釋的能力,大大地激發(fā)了學(xué)生自主學(xué)習(xí)的積極性,學(xué)生的創(chuàng)新意識(shí)日漸增強(qiáng),真正實(shí)現(xiàn)了利用信息技術(shù)為教學(xué)內(nèi)容服務(wù)。
《圓柱的體積》教學(xué)設(shè)計(jì)8
教學(xué)過程
一、情景引入
1、教學(xué)開始首先出示了一個(gè)裝了半杯水的燒杯,然后拿出一個(gè)圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:會(huì)發(fā)生什么情況?由這個(gè)發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(學(xué)生互相討論后匯報(bào),教師設(shè)疑)
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
。1)、先出示了兩個(gè)大小不等的圓柱體讓學(xué)生判斷哪個(gè)體積大?
(2)、提問:“要比較兩個(gè)圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個(gè)水面升得高。
。3)、讓學(xué)生運(yùn)用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實(shí)驗(yàn)結(jié)果填入實(shí)驗(yàn)報(bào)告1中。(課件出示)
。4)、學(xué)生通過動(dòng)手操作匯報(bào)結(jié)論:當(dāng)?shù)椎葧r(shí),圓柱越高體積越大;當(dāng)高等時(shí),圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
。1)、再次設(shè)疑:如果要準(zhǔn)確的知道哪個(gè)圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計(jì)算圓柱的體積。
(2)、引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
。3)、讓學(xué)生思考:怎樣計(jì)算圓柱的體積呢,依據(jù)學(xué)過的知識(shí),你可以做出怎樣的假設(shè)?
。4)、學(xué)生小組討論交流并匯報(bào):圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個(gè)近似長方體;圓柱的體積可能也是用底面積乘高來計(jì)算。
。5)、讓學(xué)生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計(jì)算器計(jì)算體積,并填入實(shí)驗(yàn)報(bào)告2中。(課件出示)
4、確定方法,探究實(shí)驗(yàn),驗(yàn)證體積公式。
。1)、首先要求學(xué)生利用實(shí)驗(yàn)工具,自主商討確定研究方法。
。2)、學(xué)生通過討論交流確定了兩種驗(yàn)證方案。
方案一:將圓柱c放入水中,驗(yàn)證圓柱c的體積。
方案二:將學(xué)具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計(jì)算新形體的體積,驗(yàn)證圓柱d的體積。
。3)、學(xué)生按照自己所設(shè)想的方案動(dòng)手實(shí)驗(yàn),并記錄有關(guān)數(shù)據(jù),填入實(shí)驗(yàn)報(bào)告2中。
(4)、實(shí)驗(yàn)后讓學(xué)生對(duì)數(shù)據(jù)進(jìn)行分析:用實(shí)驗(yàn)的方法得出的數(shù)據(jù)與實(shí)驗(yàn)前假想計(jì)算的數(shù)據(jù)進(jìn)行比較,你發(fā)現(xiàn)了什么?
。5)、學(xué)生匯報(bào):實(shí)驗(yàn)的結(jié)果與猜想的結(jié)果基本相同。
(6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實(shí)可以像計(jì)算長方體體積那樣,用底面積乘以高。
。7)、小結(jié):
要想求出一個(gè)圓柱的體積,需要知道什么條件?
(8)、學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋?zhàn)詫W(xué)情況:
v=sh
三、鞏固發(fā)展
1、課件出示例4,學(xué)生獨(dú)立完成。
指名說說這樣列式的依據(jù)是什么。
2、鞏固反饋
3、完成第9頁的“試一試”和練一練”中的兩道題。
。ā熬氁痪殹敝涣惺剑挥(jì)算)
集體訂正,說一說圓柱體的體積還可以怎樣算?
4、一個(gè)圓柱形水杯的底面直徑是10厘米,高是15厘米,已知水杯中水的體積是整個(gè)水杯體積的 2/3, 計(jì)算水杯中水的體積?
5、拓展練習(xí)
(1)、 一個(gè)長方形的紙片長是6分米,寬4分米。用它分別圍成兩個(gè)圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計(jì)算說明理由。(得數(shù)保留兩位小數(shù))
。2)、 一個(gè)底面直徑是20厘米的圓柱形容器里,放進(jìn)一個(gè)不規(guī)則的鑄鐵零件后,容器里的水面升高4厘米,求這鑄鐵零件的體積是多少?
四、全課小結(jié):
談?wù)勥@節(jié)課你有哪些收獲。
教學(xué)內(nèi)容:人教版《九年義務(wù)教育六年制小學(xué)數(shù)學(xué)》(第十二冊)圓柱體積
教學(xué)目標(biāo):
1、結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡單的實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3、通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):圓柱體積計(jì)算公式的推導(dǎo)過程
《圓柱的體積》教學(xué)設(shè)計(jì)9
教學(xué)目標(biāo)
1.使學(xué)生初步理解和掌握圓柱的體積計(jì)算公式。會(huì)用公式計(jì)算圓柱的體積,并能應(yīng)用分式解答一些實(shí)際問題。
2.在充分展示體積公式推導(dǎo)過程的基礎(chǔ)上,培養(yǎng)學(xué)生推理歸納能力和自學(xué)能力。
教學(xué)重點(diǎn): 圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教學(xué)難點(diǎn):圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教 法:啟發(fā)點(diǎn)撥,歸納總結(jié),直觀演示
學(xué) 法:自學(xué)歸納法,小組交流法
課前準(zhǔn)備:課件
教學(xué)過程:
一、定向?qū)W(xué)(5分)
。ㄒ唬⿲(dǎo)學(xué)
1.什么叫體積?(指名回答)
生:物體所占空間的大小叫做體積。
師:你學(xué)過哪些體積的計(jì)算公式?(指名回答)
根據(jù)學(xué)生的回答,板書:
長方體體積=底面積×高
2.圓面積公式是怎樣推導(dǎo)出來的?
生:把一個(gè)圓,平均分成數(shù)個(gè)扇形,拼成一個(gè)近似長方形,長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于圓的半徑,(根據(jù)學(xué)生的敘述,邊用幻燈片演示。)得到圓面積公式s=2πr。
3.動(dòng)腦筋想一想,圓柱的體積,能不能轉(zhuǎn)化成你學(xué)過的形體,推導(dǎo)出計(jì)算圓柱體積的公式?
4、導(dǎo)入
我們已經(jīng)認(rèn)識(shí)了圓柱體,學(xué)會(huì)了圓柱體側(cè)面積和表面積的計(jì)算,今天研究圓柱的體積。(板書:圓柱的體積)
(二)定向
出示學(xué)習(xí)目標(biāo):
1、理解和掌握圓柱的體積計(jì)算公式。
2、會(huì)用公式計(jì)算圓柱的體積,并能運(yùn)用公式解答一些實(shí)際問題。
二、合作交流(15分)
1.閱讀書25頁。
2、看書回答:
(1)圓柱體是怎樣變成近似長方體的?
(2)切拼成的長方體的體積、底面積和高分別與圓柱體的體積、底面積、高有什么關(guān)系?
(3)怎樣計(jì)算切拼成的長方體體積?為什么 ?用字母怎樣表示?
3、小組展評(píng)交流結(jié)果。
(1)展評(píng)題(1)。圓柱體是怎樣變成長方體的?把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個(gè)近似長方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的立體圖形越接近長方體。)
(2)展評(píng)題2。
切拼成的長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱體的底面積,長方體的高相當(dāng)于圓柱體的高。
。3)展評(píng)題3
圓柱體積=底面積×高
v=sh
4、公式檢測
學(xué)生獨(dú)立完成書上做一做1、2題。
三、自主學(xué)習(xí)(5)
1、出示例6
下面這個(gè)杯子能不能裝下這袋奶
直徑8厘米 高10厘米 這袋奶498毫升
2、嘗試列式計(jì)算.
3、學(xué)生展示自學(xué)結(jié)果。
4、小結(jié)
小結(jié):要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長,先求出底面積)和高。注意統(tǒng)一單位名稱。
四、質(zhì)疑探究(2)
已知圓柱的底面周長和高又怎樣求圓柱的體積?
五、
小結(jié)檢測
。
13
分)
(一)小結(jié)
讓學(xué)生說出圓柱體積的推導(dǎo)過程,體積公式。
。ǘz測
1、把圓柱切開,可拼成一個(gè)( ),圓柱的體積等于近似長方體的( ),圓柱的底面積等于( ),圓柱的高等于( ),所以圓柱的體積=( )。
2.圓柱體的底面積3.14平方分米,高40厘米。它的體積是多少?
3.一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
4 判斷正誤,對(duì)的畫“√”,錯(cuò)誤的畫“×”。
(1)圓柱體的底面積越大,它的體積越大。( )
(2)圓柱體的高越長,它的體積越大。( )
。3)圓柱體的體積與長方體的體積相等。( )
。4)圓柱體的底面直徑和高可以相等。( )
5、 一張長方形的紙長6.28分米,寬4分米。用它分別圍成兩個(gè)圓柱體,它們的體積大小一樣嗎?請你計(jì)算一下。
板書設(shè)計(jì):
圓柱的體積
圓柱體積=底面積×高
v=sh
75× 90=6750(立方厘米) 杯子的底面積:3.14×(8/2) ×(8/2) ×10=502.4(ml)
答:它的體積是6750立方米。答:這個(gè)杯子能裝下這袋奶。
《圓柱的體積》教學(xué)設(shè)計(jì)10
教學(xué)目標(biāo)
1、理解圓柱體體積公式的推導(dǎo)過程,掌握計(jì)算公式。
2、會(huì)運(yùn)用公式計(jì)算圓柱的體積。
教學(xué)重點(diǎn)
圓柱體體積的計(jì)算。
教學(xué)難點(diǎn)
理解圓柱體體積公式的推導(dǎo)過程。
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備
(一)教師提問
1、什么叫體積?怎樣求長方體的體積?
2、圓的面積公式是什么?
3、圓的面積公式是怎樣推導(dǎo)的?
(二)談話導(dǎo)入
同學(xué)們,我們在研究圓面積公式的推導(dǎo)時(shí),是把它轉(zhuǎn)化成我們學(xué)過的長方形知識(shí)的來解決的。那圓柱的體積怎樣計(jì)算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計(jì)算呢?這節(jié)課我們就來研究這個(gè)問題。(板書:圓柱的體積)
二、新授教學(xué)
。ㄒ唬┙虒W(xué)圓柱體的體積公式。(演示動(dòng)畫“圓柱體的體積1”)
1、教師演示
把圓柱的底面分成了16個(gè)相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體。
2、學(xué)生利用學(xué)具操作。
3、啟發(fā)學(xué)生思考、討論:
。1)圓柱體切開后可以拼成一個(gè)什么形體?(近似的長方體)
(2)通過剛才的實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
①拼成的近似的長方體和圓柱體相比,體積大小沒變,形狀變了。
、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化。
、劢崎L方體的高就是圓柱的高,沒有變化。
4、學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進(jìn)行猜想。
。1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
(2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
。3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5、啟發(fā)學(xué)生說出通過以上的觀察,發(fā)現(xiàn)了什么?
(1)平均分的份數(shù)越多,拼起來的形體越近似于長方體。
。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個(gè)形體就越近似于長方體。
6、推導(dǎo)圓柱的體積公式
。1)學(xué)生分組討論:圓柱體的體積怎樣計(jì)算?
。2)學(xué)生匯報(bào)討論結(jié)果,并說明理由。
因?yàn)殚L方體的體積等于底面積乘高。(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高。(板書:圓柱的體積=底面積×高)
(3)用字母表示圓柱的體積公式。(板書:V=Sh)
。ǘ┙虒W(xué)例4。
1。出示例4
例4。一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
2。反饋練習(xí)
。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
。2)一個(gè)圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?
。ㄈ┙虒W(xué)例5。
1、出示例5
例5、一個(gè)圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個(gè)水桶的容積是多少立方分米?
水桶的底面積:
=3.14×
。3.14×100
=314(平方厘米)
水桶的容積:
314×25
。7850(立方厘米)
。7.8(立方分米)
答:這個(gè)水桶的容積大約是7.8立方分米。
三、課堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
1、圓柱體體積公式的推導(dǎo)方法。
2、公式的應(yīng)用。
四、課堂練習(xí)
(一)填表
底面積S(平方米)
高h(yuǎn)(米)
圓柱的體積V(立方米)
15
3
6.4
4
《圓柱的體積》教學(xué)設(shè)計(jì)11
教學(xué)內(nèi)容:
青教版九年義務(wù)教育六年制小學(xué)數(shù)學(xué)六年級(jí)下冊第23—28頁。
教材簡析:
該信息窗呈現(xiàn)的是圓柱和圓錐形狀的冰淇淋盒,并分別標(biāo)出了它們的底面直徑和高。引導(dǎo)學(xué)生提出問題,引入對(duì)圓柱、圓錐體積計(jì)算的探索和學(xué)習(xí)!昂献魈剿鳌敝械谝粋(gè)紅點(diǎn)部分是學(xué)習(xí)圓柱的體積。
教學(xué)目標(biāo):
1、結(jié)合具體情境,通過探索與發(fā)現(xiàn),理解并掌握圓柱并能解決簡單的實(shí)際問題。
2、經(jīng)歷探索圓柱計(jì)算公式的過程,進(jìn)一步發(fā)展空間觀念。
3、在觀察與實(shí)驗(yàn)、猜測與驗(yàn)證、交流與反思等活動(dòng)中,初步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,初步了解并掌握一些數(shù)學(xué)思想方法。
教學(xué)重點(diǎn)和難點(diǎn):
圓柱、圓錐體積的計(jì)算方法,以及體積公式的探索推導(dǎo)過程。
教具準(zhǔn)備:
多媒體課件、圓柱體積學(xué)具、沙子等。
第一課時(shí)
教學(xué)過程:
一、創(chuàng)設(shè)情境,激趣引入。
談話:同學(xué)們,天氣漸漸熱了,在夏季同學(xué)們最喜歡的冷飲是什么?(生回答)
課件出示:兩個(gè)圓柱體冰淇淋。
談話:看,小明買了兩個(gè)冰淇淋,你能猜猜哪種包裝盒體積大嗎?
。ㄉ聹y)這節(jié)課我們就來研究圓柱的體積。(板書課題——圓柱體的體積。)
設(shè)計(jì)意圖:
從生活中常見的例子導(dǎo)入新課,從中培養(yǎng)學(xué)生在生活中發(fā)現(xiàn)數(shù)學(xué)問題、提出問題的意識(shí)。學(xué)生的猜測為后面的實(shí)驗(yàn)驗(yàn)證做好了鋪墊,激發(fā)學(xué)生探究新知的欲望。
二、回憶舊知,實(shí)現(xiàn)遷移。
談話:怎樣求圓柱的體積呢?我們也許能從以前研究問題的方法里得到啟示,找到解決問題的辦法。請大家想一想,在學(xué)習(xí)圓的面積時(shí),我們是怎樣推導(dǎo)出圓的面積計(jì)算公式的?
。▽W(xué)生回答后,教師利用多媒體課件動(dòng)態(tài)演示把圓等分切割,拼成一個(gè)近似的長方形,找出圓與所拼成的長方形之間的關(guān)系,進(jìn)而推導(dǎo)出圓面積計(jì)算公式的過程。)
設(shè)計(jì)意圖:
通過回顧圓的面積的推導(dǎo)方法,巧妙地運(yùn)用舊知識(shí)進(jìn)行遷移。
三、利用素材,探索新知。
、褰涣鞑聹y
談話:通過剛才的回顧,你們能想辦法將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的立體圖形來求體積嗎?
生:我們學(xué)過長方體的體積,可不可以將圓柱轉(zhuǎn)化成長方體呢?
師談話:你的想法很好,怎樣轉(zhuǎn)化呢?
生討論,交流。
生匯報(bào),可能會(huì)有以下幾種想法:
1、先在圓柱的底面上畫一個(gè)最大的正方形,再豎著切掉四周,得到一個(gè)長方體,然后把切下的四塊拼在一起。
2、可以把圓柱的底面分成許多相同的扇形,然后豎著切開,重新拼一拼。
3、如果是橡皮泥那樣的,可以把它重新捏成一個(gè)長方體,就能計(jì)算出它的體積了。
談話:請同學(xué)討論和評(píng)價(jià)一下,哪一種方法更合理呢?引導(dǎo)學(xué)生按照第二種方法進(jìn)行驗(yàn)證。
、鎸(shí)驗(yàn)驗(yàn)證
學(xué)生動(dòng)手進(jìn)行實(shí)驗(yàn)。
談話:請每個(gè)小組拿出學(xué)具,按照剛才第3小組的方法把它轉(zhuǎn)化為近似的長方體,并研究轉(zhuǎn)化后的長方體和原來圓柱體積、底面積、高之間的關(guān)系。
學(xué)生合作操作,集體研究、討論、記錄。
設(shè)計(jì)意圖本環(huán)節(jié)讓學(xué)生親自動(dòng)手 操作,再次感受“化圓為方”的思想。動(dòng)手操作,是學(xué)生發(fā)現(xiàn)規(guī)律和獲取數(shù)學(xué)思想的重要途徑。
四、分析關(guān)系,總結(jié)公式
1、全班交流
談話:哪個(gè)小組愿意展示一下你們小組的研究結(jié)果?
引導(dǎo)學(xué)生發(fā)現(xiàn):
轉(zhuǎn)化后的形狀變了,但是體積沒有變,底面的面積沒有變,高也沒有變。
2、分析關(guān)系
引導(dǎo)說出:圓柱體轉(zhuǎn)化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。
3、總結(jié)公式。
談話:同學(xué)們真了不起!你們的發(fā)現(xiàn)非常正確。我們來看一看課件演示。
。ㄕn件分別演示將圓柱等分成16份、32份、64份的割拼過程,學(xué)生觀察、思考。)
談話:你發(fā)現(xiàn)了什么?
引導(dǎo)觀察:分的份數(shù)越多,拼成的圖形就越接近長方體。
(課件動(dòng)態(tài)演示:圓柱的高——長方體的高,圓柱的底面積——長方體的底面積。)
談話:其實(shí)大家剛才又采用了“化圓為方”的方法將圓柱轉(zhuǎn)化成了長方體。你現(xiàn)在能總結(jié)出圓柱體積的計(jì)算公式嗎?說一說你是怎樣想的。
根據(jù)學(xué)生的回答教師板書:
長方體的體積 = 底面積 × 高
圓柱的體積 = 底面積 × 高
談話:你能用字母表示圓柱的體積計(jì)算公式嗎?V=Sh
設(shè)計(jì)意圖教師給予適當(dāng)?shù)难菔,溝通圓面積計(jì)算公式的推導(dǎo)方法與圓柱體積計(jì)算公式推導(dǎo)方法的共同點(diǎn)——轉(zhuǎn)化法,便于學(xué)生順利推導(dǎo)出圓柱體積的計(jì)算公式。
五、利用公式,解決問題。
自主練習(xí)第1題、第2題、第3題
設(shè)計(jì)意圖鞏固練習(xí)及時(shí)讓學(xué)生利用結(jié)論解決問題,感受自己研究的重要價(jià)值,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
六、課堂總結(jié)
《圓柱的體積》教學(xué)設(shè)計(jì)12
教學(xué)內(nèi)容:
蘇教版義務(wù)教育教科書《數(shù)學(xué)》六年級(jí)下冊第18-19頁練習(xí)三第10—16題,思考題以及動(dòng)手做。
教學(xué)目標(biāo):
1.通過知識(shí)梳理、交流展示等,使學(xué)生進(jìn)一步理解圓柱表面積和體積的區(qū)別,能選擇恰當(dāng)?shù)姆椒ń鉀Q問題,在浸沒實(shí)驗(yàn)中,能測算出不規(guī)則物體的體積,積累活動(dòng)經(jīng)驗(yàn),提升實(shí)驗(yàn)素養(yǎng)。
2.使學(xué)生經(jīng)歷觀察、操作、比較、分析、估計(jì)、類比、歸納等活動(dòng)過程,培養(yǎng)學(xué)生初步的比較、分析、綜合、抽象、概括,以及簡單的判斷、推理能力,提高轉(zhuǎn)化的意識(shí)和能力,發(fā)展數(shù)學(xué)思考,增強(qiáng)空間觀念。
3.通過豐富的數(shù)學(xué)學(xué)習(xí)活動(dòng),使學(xué)生進(jìn)一步體會(huì)數(shù)學(xué)與生活的聯(lián)系,感受立體圖形學(xué)習(xí)的價(jià)值,提高數(shù)學(xué)學(xué)習(xí)的興趣和學(xué)好數(shù)學(xué)的信心。
教材分析:
圓柱和圓錐這部分內(nèi)容是學(xué)生認(rèn)識(shí)了圓,掌握了長方體和正方體的形狀特征以及表面積與體積計(jì)算方法的基礎(chǔ)上編排,是小學(xué)數(shù)學(xué)最后教學(xué)的形體知識(shí)。與長方體、正方體一樣,圓柱也是基本的幾何形體,在日常生活和生產(chǎn)勞動(dòng)中經(jīng)常能夠看到。教學(xué)圓柱能夠擴(kuò)大學(xué)生認(rèn)識(shí)幾何形體的范圍,豐富對(duì)形體的認(rèn)識(shí),有利于解決更多的實(shí)際問題。教學(xué)圓柱,也能夠豐富學(xué)生認(rèn)識(shí)幾何形體的活動(dòng)經(jīng)驗(yàn),深入理解體積的意義,有利于完善認(rèn)知結(jié)構(gòu),發(fā)展空間觀念,有利于轉(zhuǎn)化能力和推理能力的進(jìn)一步提高。
學(xué)情分析:
學(xué)生在過去的學(xué)習(xí)中已經(jīng)積累了十分豐富的圖形與幾何的學(xué)習(xí)經(jīng)驗(yàn),特別是圓面積的計(jì)算方法,長方體、正方體、圓柱和圓錐的特征,長方體、正方體和圓柱的表面積和體積的計(jì)算方法等知識(shí)的探索過程,以及在這些過程中獲得的學(xué)習(xí)經(jīng)驗(yàn)和方法,都為本課圓柱體積的綜合練習(xí)奠定了堅(jiān)實(shí)的基礎(chǔ)。本節(jié)課,學(xué)生通過知識(shí)梳理、交流展示等活動(dòng),可以進(jìn)一步理解圓柱表面積和體積的區(qū)別,并能選擇恰當(dāng)?shù)姆椒ń鉀Q問題,發(fā)展數(shù)學(xué)思考,增強(qiáng)空間觀念,進(jìn)一步體會(huì)數(shù)學(xué)與生活的聯(lián)系,感受立體圖形學(xué)習(xí)的價(jià)值,提高數(shù)學(xué)學(xué)習(xí)的興趣和學(xué)好數(shù)學(xué)的信心。
設(shè)計(jì)理念:
從以教定學(xué),到以學(xué)定教,再到由學(xué)轉(zhuǎn)教。學(xué)習(xí)金字塔理論告訴我們:最好的學(xué)習(xí)是講給別人聽,隨著教學(xué)改革的不斷推進(jìn),我們從“以教定學(xué)”走向了“以學(xué)定教”,以學(xué)定教,呼喚教育教學(xué)回到學(xué)生的真實(shí)學(xué)情、現(xiàn)實(shí)認(rèn)知水平等方面上來,根據(jù)學(xué)生的“學(xué)”,設(shè)計(jì)教師的“教”,日益凸顯了教師是組織者、引導(dǎo)者、合作者的角色定位。葉圣陶先生說過,“教是為了不教”,賦予“以學(xué)定教”更多的生長意義,我們在不知不覺中,從“以學(xué)定教”轉(zhuǎn)向了“由學(xué)轉(zhuǎn)教”,即由學(xué)生的學(xué)轉(zhuǎn)為由學(xué)生來教的更高級(jí)的學(xué)習(xí)生態(tài)。教學(xué)方式的改變讓我們更加明確了學(xué)習(xí)的意義。
重點(diǎn)難點(diǎn):
教學(xué)重點(diǎn):用圓柱的表面積和體積公式解決實(shí)際問題。教學(xué)難點(diǎn):合理分析問題并選擇恰當(dāng)算法,增強(qiáng)空間觀念。
教學(xué)準(zhǔn)備:
教師準(zhǔn)備:反饋器一套;希沃白板、課件及5塊互動(dòng)大屏;投影儀;兩份合作學(xué)習(xí)(實(shí)驗(yàn))單;板貼一套等。
學(xué)生準(zhǔn)備:底面被平均分成16份的圓柱形學(xué)具16套;知識(shí)梳理圖50張;預(yù)學(xué)單50張;圓柱形容器及土豆或鐵塊若干等。
《圓柱的體積》教學(xué)設(shè)計(jì)13
教學(xué)目標(biāo)
1、知識(shí)與技能:理解教材中形體轉(zhuǎn)化的過程,掌握圓柱體積的計(jì)算公式,會(huì)用公式計(jì)算圓柱的體積,解決有關(guān)簡單的實(shí)際問題。拓展教材內(nèi)容,初步了解直柱體的相關(guān)知識(shí)。
2、過程與方法:利用教材空間,為學(xué)生搭建思維平臺(tái)。讓學(xué)生經(jīng)歷觀察、想象、思考、交流等教學(xué)活動(dòng)過程,理解圓柱體積計(jì)算公式的推導(dǎo)過程,提高學(xué)生思維能力,同時(shí)體驗(yàn)轉(zhuǎn)化和極限的思想。
3、情感與態(tài)度:挖掘教材內(nèi)涵,把圖形的變換過程,轉(zhuǎn)變?yōu)閷W(xué)生思維能力的培養(yǎng)、提高的過程,并進(jìn)一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生學(xué)習(xí)興趣,滲透事物是普遍聯(lián)系的唯物辯證思想。
教學(xué)重點(diǎn):
理解圓柱體積計(jì)算公式的推導(dǎo)過程,運(yùn)用圓柱體積計(jì)算公式準(zhǔn)確解決實(shí)際問題。
教學(xué)難點(diǎn):
正確理解圓柱體積計(jì)算公式的推導(dǎo)過程。
教學(xué)過程
一、情境導(dǎo)入:
老師手拿一個(gè)圓柱形橡皮泥(大小適宜)。
1、師:通過前面的學(xué)習(xí),關(guān)于圓柱你已經(jīng)知道什么?還想了解它的哪些知識(shí)?
生1:(已學(xué)知識(shí))。
生2:圓柱是一種立體圖形,那么它的體積怎么計(jì)算?
【學(xué)情分析:在學(xué)習(xí)圓柱的認(rèn)識(shí)和表面積的基礎(chǔ)上,學(xué)生能夠順利回憶已學(xué)的知識(shí),而且質(zhì)疑提出即將學(xué)習(xí)的知識(shí),明確學(xué)習(xí)目標(biāo),為本節(jié)課的學(xué)習(xí)找到思維與認(rèn)知源泉!
2、師:聯(lián)系已經(jīng)掌握的有關(guān)立體圖形的知識(shí),你能想辦法求出這個(gè)圓柱體的體積嗎?
生1:圓柱體的體積計(jì)算沒有學(xué)過,無法計(jì)算。
生2:將這個(gè)圓柱放入一個(gè)盛有水的長方體容器中,量出上升了的水的長、寬、高,就可以求出它的體積。
生3:圓柱體在水中必須完全浸沒,而且水還不能溢出。
【學(xué)情分析:學(xué)生在五年級(jí)學(xué)習(xí)長方體、正方體有關(guān)知識(shí)的基礎(chǔ)上,很容易想到運(yùn)用“排水法”來解決問題,所以這一環(huán)節(jié)也充分給予學(xué)生展示自我的機(jī)會(huì),培養(yǎng)思維中的自信心!拷處熢趯W(xué)生中找出小助手,幫助測量有關(guān)數(shù)據(jù),全體同學(xué)計(jì)算水的體積,并作記載。
師:運(yùn)用轉(zhuǎn)化思想,聯(lián)系已學(xué)知識(shí),解決新生問題,同學(xué)們真了不起!
【設(shè)計(jì)意圖:學(xué)生的學(xué)習(xí)活動(dòng)要建立在已有的知識(shí)和認(rèn)知基礎(chǔ)上,通過水的變形把圓柱的體積轉(zhuǎn)化為長方體的體積來計(jì)算,使學(xué)生初步感知數(shù)學(xué)轉(zhuǎn)化思想在解決問題中的價(jià)值,同時(shí)提高學(xué)生解決問題能力和思維能力!
4、師:如果要求壓路機(jī)前輪的體積或是求樓房中柱子的體積,還能不能用這種方法計(jì)算嗎?(不能)那么求圓柱的體積時(shí)是否也有一個(gè)簡單、易算的體積計(jì)算公式呢?今天我們就一起來研究圓柱體積的計(jì)算方法。
【設(shè)計(jì)意圖:學(xué)生的學(xué)習(xí)應(yīng)該是出于自身需要的,是主動(dòng)的、有效的,已有的知識(shí)已經(jīng)不能解決新生問題時(shí),學(xué)生產(chǎn)生強(qiáng)烈的求知欲望,為主動(dòng)參與知識(shí)的形成過程,探究圓柱的體積計(jì)算公式奠定積極的情感基礎(chǔ)!
二、新舊過度:
教師引導(dǎo)學(xué)生觀察圓柱形實(shí)物。
1、
師:發(fā)揮你的想象,哪些平面圖形可以演變?yōu)閳A柱體?生1:以長方形的一條長為軸,把長方形旋轉(zhuǎn)一周,就形成一個(gè)圓柱體。
(教師演示:大小不同的長方形旋轉(zhuǎn)形成圓柱體。)
生2:把一個(gè)圓形上下平移,移動(dòng)過的軌跡就是圓柱體。(課件演示:大小不同的圓形上下垂直平移不同高度形成圓柱體。)
師:通過剛才的演示過程你覺得圓柱的體積大小與什么有關(guān)?(圓柱的底面積和高)
【設(shè)計(jì)意圖:其一,讓學(xué)生初步感知幾何圖形點(diǎn)———線———面———體的演變過程;其二,訓(xùn)練學(xué)生的空間思維能力,進(jìn)而提升學(xué)生的數(shù)學(xué)思維含量;其三,為進(jìn)一步探究圓柱的體積計(jì)算公式明確探究方向!
2、師:圓柱的底面大小就是圓柱底面圓形的面積,叫做圓柱的底面積。誰還記得圓面積計(jì)算公式的推導(dǎo)過程?
學(xué)生口述,同時(shí)課件演示圓形轉(zhuǎn)化為近似長方形的過程。
【設(shè)計(jì)意圖:回憶圓轉(zhuǎn)化為近似長方形的過程,使學(xué)生重溫化曲為直、化圓為方的數(shù)學(xué)思想,而且溝通新舊知識(shí)間的聯(lián)系,同時(shí)為下一步對(duì)圓柱的轉(zhuǎn)化(等份切割)順利進(jìn)行提供思維方法的幫助!
3、教師小結(jié):我們能把一個(gè)圓采用化曲為直,化圓為方的方法轉(zhuǎn)化成近似的長方形,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個(gè)學(xué)過的立體圖形呢?
三、自主探究
1、學(xué)生手拿圓柱實(shí)物,仔細(xì)觀察,獨(dú)立思考。
2、組織學(xué)生小組討論,把個(gè)人的想法在小組中交流,形成統(tǒng)一意見。
強(qiáng)調(diào):在討論過程中,教師參與其中,傾聽學(xué)生想法,調(diào)整匯報(bào)次序,同時(shí)提醒學(xué)生觀察手中圓柱實(shí)物。
3、匯報(bào)交流,統(tǒng)一意見。
生1:把一個(gè)圓剪拼成一個(gè)近似的長方形,然后把圓形和近似長方形同時(shí)向上平移相同的高度,這時(shí)他們的軌跡一個(gè)是圓柱體,一個(gè)是近似長方體,而且它們的體積相等。
。◣煟阂粋(gè)圓柱和一個(gè)長方體只要底面積和高分別相等,它們的體積就相等嗎?一會(huì)兒我們來解決這個(gè)問題。)
生2:把圓柱的底面分成許多相等的扇形,再沿這些分割線把圓柱縱切開來,從而剪拼成一個(gè)近似的長方體。
。◣煟簽槭裁词墙频拈L方體?———滲透數(shù)學(xué)極限思想)
【設(shè)計(jì)意圖:這個(gè)轉(zhuǎn)化的過程是本節(jié)課的難點(diǎn),在前面知識(shí)鋪墊的基礎(chǔ)上,發(fā)揮學(xué)生集體智慧的結(jié)晶,為學(xué)生提供廣闊的思維和交流平臺(tái),真正使學(xué)生的思維與學(xué)習(xí)相輔相成,從而達(dá)到提高學(xué)生空間思維能力之目的!
4、課件演示:
師:仔細(xì)觀察下面這組課件,和你想象的是否一樣?
演示兩次,第一次把圓柱平均分成16份,再剪拼成一個(gè)近似的長方形;第二次把圓柱平均分成32份,再剪拼成一個(gè)近似的長方形。
師:如果再平均分成更多的份數(shù),結(jié)果會(huì)怎樣呢?(平均分成的份數(shù)越多,轉(zhuǎn)化成的形體就越接近長方體——極限思想)【問題討論:課件中把圓柱平均分割后,其中的一塊又平均分成兩份,其中的一份移接到另一端,拼成一個(gè)更接近的長方體,而教材上的意圖并沒有這樣的過程,我認(rèn)為教材的方法是很可取的,符合極限思想,并且可以給予學(xué)生充分的思考和想象空間,因?yàn)橹灰值姆輸?shù)無限多時(shí),拼成的圖形就是一個(gè)長方體。然而實(shí)際教學(xué)中只是把圓柱平均分成16份或32份,那么在實(shí)際教學(xué)中如何更準(zhǔn)確的詮釋實(shí)際與理論之間的這種矛盾,從而更好的服務(wù)于學(xué)生思維、服務(wù)于課堂教學(xué)呢?】
5、直觀演示,尋找聯(lián)系師:為了強(qiáng)化剛才的轉(zhuǎn)化過程,我們再借助實(shí)物教具演示一遍(教具一半為紅色,一半為綠色)。仔細(xì)觀察演示過程,你能發(fā)現(xiàn)什么?
生:長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱的底面積,而且它們的高相等。
因?yàn)椋洪L方體的體積=底面積×高
所以:圓柱的體積=底面積×高
V = S h 【學(xué)情分析:在小組討論、課件演示的基礎(chǔ)上,再有雙色教具(一個(gè)紅色教具,一個(gè)綠色教具,偶然發(fā)現(xiàn)雙色混合更容易輔助學(xué)生找出聯(lián)系)的實(shí)物演示,使得尋找圓柱體與長方體之間的聯(lián)系變得異常容易,并且自然而然得到圓柱體體積計(jì)算公式,同時(shí)使學(xué)生感受獲取知識(shí)的成功之喜悅、艱辛之感慨!
四、實(shí)踐應(yīng)用:
1、從公式中可以看出,只要知道哪些條件就能計(jì)算圓柱的體積?口算:一個(gè)圓柱的底面積是90平方分米,高20分米,它的體積時(shí)多少?
強(qiáng)調(diào)單位:90×20=1800(立方分米)
2、再次拿出圓柱體橡皮泥,問:如果要用圓柱體積計(jì)算公式計(jì)算它的體積,你需要測量哪些數(shù)據(jù)?(底面直徑、高)
找學(xué)生實(shí)際測量,保留整厘米數(shù),進(jìn)行計(jì)算。將計(jì)算結(jié)果與用排水法求出的體積做一對(duì)比,可能存在誤差。師:為什么會(huì)產(chǎn)生誤差呢?
生1:可能測量有誤差,并且還要保留。
生2:測量水的長、寬時(shí),容器的厚度忽略不計(jì),也能產(chǎn)生誤差。教師說明:每一個(gè)科學(xué)結(jié)論都必須經(jīng)過反復(fù)的實(shí)驗(yàn)、計(jì)算,才能得到正確的結(jié)論,我們在學(xué)習(xí)上就要有這種不怕吃苦、勇于探索的精神。
3、出示一個(gè)圓柱形玻璃杯,出示一袋液態(tài)奶(225ml),問:通過計(jì)算你能知道這個(gè)杯子能裝下這袋奶嗎?除水杯的厚度忽略不計(jì)外,你還需要知道哪些條件?
。ń處熤苯咏o出玻璃杯的底面直徑和高)
【設(shè)計(jì)意圖:層次性練習(xí)設(shè)計(jì),第一層:基本練習(xí),使學(xué)生更好的掌握本課重點(diǎn),夯實(shí)基礎(chǔ)知識(shí);第二層,變式練習(xí),進(jìn)一步加深學(xué)生對(duì)圓柱體積公式的理解和掌握,學(xué)會(huì)靈活運(yùn)用公式,在提高學(xué)生動(dòng)手操作能力的同時(shí),培養(yǎng)學(xué)生的邏輯思維能力;第三層,密切聯(lián)系生活,運(yùn)用公式解決引入環(huán)節(jié)中的問題,使學(xué)生的思維處于積極的狀態(tài),達(dá)到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的!
五、看書質(zhì)疑:看書P19—20,師:哪些知識(shí)是我們沒有講到的?(V=∏r2 h)結(jié)合本節(jié)課的探究過程,你有什么疑問嗎?
若學(xué)生有困難就教師提出問題:長方體和圓柱體有什么相同的地方,為什么他們的體積都能用V=Sh來計(jì)算?
學(xué)生獨(dú)立思考后,教師解釋:我們現(xiàn)在所學(xué)的圓柱體是直圓柱,他與長方體都屬于直柱體,只要是直柱體,體積都可以用V=Sh來計(jì)算。如三棱鏡的體積=底面三角形的面積×高
【設(shè)計(jì)意圖:課本是最好的教學(xué)輔助工具,是學(xué)生學(xué)習(xí)最好的伙伴,讓學(xué)生再次重溫本節(jié)課的學(xué)習(xí)歷程,養(yǎng)成一種良好的學(xué)習(xí)習(xí)慣和學(xué)習(xí)品質(zhì)!
【問題討論:我個(gè)人認(rèn)為,在每一節(jié)課每個(gè)知識(shí)點(diǎn)的教學(xué)過程中,都盡量站在“數(shù)學(xué)”的高度來教學(xué),于是對(duì)教材內(nèi)容進(jìn)行了拓展。長方體與圓柱體的體積公式V=Sh正好說明直柱體體積=底面積×高,但因?yàn)殚L方體(平面圍成)與圓柱體(曲面圍成)之間的聯(lián)系較難找出,無疑增加了學(xué)生的思維負(fù)擔(dān),但從數(shù)學(xué)學(xué)習(xí)的角度來說,它卻為今后“幾何”學(xué)習(xí)奠定基礎(chǔ),這一環(huán)節(jié)處理是否有利于六年級(jí)學(xué)生思維發(fā)展?】
六、全課小結(jié):
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?
【設(shè)計(jì)意圖:收獲包括知識(shí)、能力、方法、情感等全方位的體會(huì),在這里采用體溫師小結(jié),使學(xué)生暢談收獲,發(fā)現(xiàn)不足,既能訓(xùn)練學(xué)生語言表達(dá)能力,又能培養(yǎng)學(xué)生的歸納概括能力,同時(shí)通過對(duì)本節(jié)所學(xué)知識(shí)的總結(jié)與回顧,還能使學(xué)生學(xué)到的知識(shí)系統(tǒng)化、完整化!
啟發(fā)與思考
啟發(fā)
一、充實(shí)教材,為提高學(xué)生思維能力搭建平臺(tái)
課堂教學(xué)中讓學(xué)生在教師的啟發(fā)指導(dǎo)下,獨(dú)立思考、積極主動(dòng)的去探究知識(shí)是怎樣形成的,才能真正使學(xué)生成為學(xué)習(xí)的主體。在教材中已經(jīng)提供了圖形轉(zhuǎn)化的過程,那么在沒有學(xué)具讓學(xué)生進(jìn)行動(dòng)手操作、親自感悟的情況下,怎樣讓學(xué)生的思維真正參與到知識(shí)的形成過程呢?作為教師,必須充實(shí)教材。課堂中讓學(xué)生動(dòng)手測量計(jì)算所必需的數(shù)據(jù),自己感悟?qū)W習(xí)圓柱體積計(jì)算公式的必要性,合作探究圓柱體的轉(zhuǎn)化方法和過程。所有這些環(huán)節(jié)的設(shè)計(jì),都在潛移默化中引導(dǎo)學(xué)生主動(dòng)思考,主動(dòng)參與,在思考與參與中提高了學(xué)生的思維能力。
二、借助教材,為提高學(xué)生思維能力尋找支點(diǎn)
數(shù)學(xué)知識(shí)具有一定的結(jié)構(gòu),知識(shí)間存在密切的聯(lián)系,教學(xué)時(shí)要找出知識(shí)間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個(gè)較完整的知識(shí)系統(tǒng)。教材中設(shè)計(jì)了引問“圓可以轉(zhuǎn)化成長方形計(jì)算面積,圓柱可以轉(zhuǎn)化成長方形計(jì)算體積嗎?”但我認(rèn)為“面體過渡”在幾何領(lǐng)域中本身就是一個(gè)難點(diǎn),而“面面互化”遷移到“體體互化”,就難上加難,所以設(shè)計(jì)中用較長時(shí)間溝通新舊知識(shí)間的聯(lián)系:排水法的應(yīng)用,平面圖形演變?yōu)榱Ⅲw圖形的過程,圓面積的推導(dǎo)過程。在復(fù)習(xí)當(dāng)中,學(xué)生的綜合運(yùn)用能力得到提高,更重要的是為下一步學(xué)生的思維活動(dòng)確立支點(diǎn),進(jìn)而提高學(xué)生的思維能力。
三、理解教材,為提高學(xué)生思維能力提供保證數(shù)學(xué)思想的教學(xué)才是數(shù)學(xué)課堂教學(xué)中最本質(zhì)的教學(xué)。從教材的編排,還有各知識(shí)點(diǎn)的呈現(xiàn)中可以看出,有一條不變的主線貫穿始終,那就是轉(zhuǎn)化思想中的化曲為直、化圓為方。那么,只要教師真正理解教材的這一編寫意圖,學(xué)生所收獲到的就不僅是圓柱體積的計(jì)算方法,而是真正感悟到數(shù)學(xué)轉(zhuǎn)化思想,學(xué)生必將運(yùn)用這種思想影響今后的學(xué)習(xí),為其思維能力得以持續(xù)發(fā)展提供保證。思考
思考
一、演示、觀察能否代替操作?
教材中提供了教具演示,但在本節(jié)教學(xué)前,始終沒有找到學(xué)生使用的操作學(xué)具,而自己也嘗試用土豆、橡皮泥等制作學(xué)具,都因?yàn)殡y度太大(粘接處)而告失敗,在無奈之余,設(shè)計(jì)了“獨(dú)立思考———小組探究———課件演示———教具操作”四個(gè)環(huán)節(jié)來突破本節(jié)難點(diǎn)。就學(xué)生理解、接受方面來說效果不錯(cuò)。但沒有讓學(xué)生親自操作,總感覺影響學(xué)生思維發(fā)展。類似教學(xué)如:圓錐高的認(rèn)識(shí)。
二、研究中的失誤會(huì)不會(huì)造成學(xué)生認(rèn)知的“失誤”?
課堂中為求真實(shí),進(jìn)行了兩次實(shí)際測量(第一次測長方體中水的長寬高;第二次測圓柱形橡皮泥的底面直徑和高)。兩次計(jì)算結(jié)果的對(duì)比,使學(xué)生思維與課堂結(jié)構(gòu)都體現(xiàn)完整性。但由于種種誤差,計(jì)算結(jié)果很可能不會(huì)相等,這就可能會(huì)讓學(xué)生對(duì)結(jié)論產(chǎn)生懷疑(盡管教師已經(jīng)說明),那么是否有必要讓學(xué)生經(jīng)歷一個(gè)“失誤”的過程呢?類似教學(xué)如:圓周率的計(jì)算。
《圓柱的體積》教學(xué)設(shè)計(jì)14
教學(xué)內(nèi)容:教材第25、26頁例4、“試一試”、“練一練”和練習(xí)七的1、2題
教學(xué)目標(biāo):
1、進(jìn)一步深入地引導(dǎo)學(xué)生去了解圓柱,讓學(xué)生掌握圓柱的體積計(jì)算公式,并能解決實(shí)際問題。
2、培養(yǎng)學(xué)生自學(xué)能力,動(dòng)手能力,觀察分析和歸納知識(shí)的能力,讓學(xué)生理解“轉(zhuǎn)化”的方法。
教學(xué)重點(diǎn):理解和掌握圓柱體積的計(jì)算公式。
教學(xué)難點(diǎn):圓柱體積計(jì)算公式的推導(dǎo)。
教學(xué)準(zhǔn)備:圓柱體模具。
教學(xué)過程:
預(yù)習(xí)作業(yè)檢測
學(xué)習(xí)計(jì)算圓的面積時(shí),是怎樣得出圓面積的計(jì)算公式的?
求下面各圓的面積
R=1厘米求Sd=4分米求Sc=6.28米求S
長方體與正方體的體積都可以用什么公式來表示?
圓柱底面積/平方米高/米體積/立方米
0.61.2
0.253
合作探究
你們是怎么知道圓柱的體積=底面積×高的呢?生答預(yù)習(xí)得知。
課本上是怎么把圓柱體和長方體聯(lián)系在一起的呢?
生答,同時(shí)師相機(jī)用課件展示圓柱體和長方體相互轉(zhuǎn)化的畫面。
用切拼法把圓柱體切成16等份、32等份、64等份,由此得出結(jié)論:
○1等份越多,拼成的物體越接近于長方體。
○2長方體與圓柱體等底等高。
○3長方體體積=圓柱體體積
○4圓柱的體積=底面積×高(V=sh)。
根據(jù)剛才的結(jié)論完成下面的題目:
○1一根圓柱形鋼材,底面積是20平方厘米,高是1.5米,
它的體積是多少?生獨(dú)立完成后,師有選擇的找?guī)孜粚W(xué)生
的作業(yè)進(jìn)行投影展示,全班交流評(píng)價(jià)。
○2一個(gè)圓柱形狀的零件,底面半徑5厘米,高8厘米,這
個(gè)圓柱的體積是多少立方厘米?
引導(dǎo)學(xué)生讀題,思考。指名說出自己想的過程。生獨(dú)立解
答,展示、交流、評(píng)價(jià)。
當(dāng)堂達(dá)標(biāo)檢測
1、“練一練”第1題。
2、練習(xí)七第2題。
3、“練一練”第2題。
教學(xué)反思:
《圓柱的體積》教學(xué)設(shè)計(jì)15
一、教學(xué)目標(biāo)
(一)知識(shí)與技能
用已學(xué)的圓柱體積知識(shí)解決生活中的實(shí)際問題,并滲透轉(zhuǎn)化思想。
(二)過程與方法
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計(jì)算過程,讓學(xué)生在動(dòng)手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗(yàn)“等積變形”的轉(zhuǎn)化過程。
(三)情感態(tài)度和價(jià)值觀
通過實(shí)踐,讓學(xué)生在合作中建立協(xié)作精神,并增強(qiáng)學(xué)生“用數(shù)學(xué)”的意識(shí)。
二、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):利用所學(xué)知識(shí)合理靈活地分析、解決不規(guī)則物體的體積的計(jì)算方法。
教學(xué)難點(diǎn):轉(zhuǎn)化前后的溝通。
三、教學(xué)準(zhǔn)備
每組一個(gè)礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
四、教學(xué)過程
(一)復(fù)習(xí)舊知,做好鋪墊
1.板書:圓柱的體積。
問:圓柱的體積怎么計(jì)算?體積和容積有什么區(qū)別?
2.揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識(shí)來解決生活中的實(shí)際問題。(完整板書:用圓柱的體積解決問題。)
【設(shè)計(jì)意圖】通過復(fù)習(xí)圓柱的體積計(jì)算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識(shí)上的準(zhǔn)備。
(二)探索實(shí)踐,體驗(yàn)轉(zhuǎn)化過程
1.創(chuàng)設(shè)情境,提出問題。
每個(gè)小組桌子上有一個(gè)沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個(gè)數(shù)學(xué)問題嗎?(隨機(jī)板書)
預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)
預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)
預(yù)設(shè)3:這個(gè)瓶子一共能裝多少水?(也就是這個(gè)瓶子的容積是多少?)
2.你覺得你能輕松解決什么問題?
。1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)
學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個(gè)圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結(jié):知道了底面直徑和水的高度,要解決這個(gè)問題的確輕而易舉。請你準(zhǔn)備好直尺,或許等會(huì)兒有用哦!
。2)預(yù)設(shè)2:喝了多少水?
學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計(jì)算。
教師:當(dāng)物體形狀不規(guī)則時(shí),我們想求出它的體積可以怎么辦?
教師相機(jī)引導(dǎo):能否將空氣部分變成一個(gè)規(guī)則的立體圖形呢?
學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個(gè)圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
小結(jié):這個(gè)方法不錯(cuò),我們利用水的流動(dòng)性成功地將不規(guī)則的空氣部分轉(zhuǎn)化成了一個(gè)圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個(gè)問題還難得到你嗎?
。3)怎么求這個(gè)礦泉水瓶的容積?引導(dǎo)學(xué)生得出:倒置前水的體積+倒置后空氣的體積=瓶子容積。
【設(shè)計(jì)意圖】課本中的例題呈現(xiàn)如下,
例題是直接呈現(xiàn)轉(zhuǎn)化方法的,我是想先屏蔽相關(guān)數(shù)據(jù)信息和方法,通過激發(fā)學(xué)生解決問題的內(nèi)在需求,根據(jù)自己的生活學(xué)習(xí)經(jīng)驗(yàn)來想辦法解決,才有了對(duì)數(shù)學(xué)情境的改編,以期通過轉(zhuǎn)化、觀察、對(duì)比,讓學(xué)生發(fā)現(xiàn)倒置前后兩部分立體圖形之間的相同點(diǎn),溝通兩部分體積之間的內(nèi)在聯(lián)系,順利地把新知轉(zhuǎn)化為舊知,分散了難點(diǎn),從而找到解決問題的方法。
3.小組合作,測量計(jì)算。
(礦泉水瓶內(nèi)直徑為6cm)
教師:方法找到了,接下來能否正確求出瓶子的容積就看你們的了!
。1)課件出示:
一個(gè)內(nèi)直徑是( )的瓶子里,水的高度是( ),把瓶蓋擰緊倒置放平,無水部分是圓柱形,高度是( )。這個(gè)瓶子的容積是多少?(測量時(shí)取整厘米數(shù))
。2)四人小組合作:
A.組長安排好分工:
要量出所需數(shù)據(jù),其他組員要監(jiān)督好測量方法與結(jié)果是否正確,要按要求把題目填完整。
B.組內(nèi)互相說一說:倒置前后哪兩部分的體積不變?
礦泉水瓶的容積=( )+( )。
C.做好以上準(zhǔn)備工作后,利用所得數(shù)據(jù)獨(dú)立計(jì)算,再組內(nèi)校對(duì)結(jié)果是否正確。
【設(shè)計(jì)意圖】這一環(huán)節(jié)讓學(xué)生大膽動(dòng)手操作,在實(shí)踐中不斷發(fā)現(xiàn)解決問題,在同伴的交流中拓展自己的思維,讓學(xué)生在合作中建立協(xié)作精神。
4.交流反饋。
教師巡查,選擇礦泉水瓶中原有水高度分別6、7、8、9厘米的同學(xué)板演。
瓶中水高度為6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13
=3.14×9×(6+13)
≈537(毫升)。
瓶中水高度為7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12
=3.14×9×(7+12)
≈537(毫升)。
瓶中水高度為8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11
=3.14×9×(8+11)
≈537(毫升)。
瓶中水高度為9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10
=3.14×9×(9+10)
≈537(毫升)。
教師:出示某品牌礦泉水瓶的標(biāo)簽,上面寫著凈含量為550毫升,基本符合。
5.解答正確嗎?
教師引導(dǎo)學(xué)生回顧反思:剛才我們是怎樣解決問題的?
小結(jié):根據(jù)具體情況選擇合適的轉(zhuǎn)化方法,像這樣不規(guī)則立體圖形的體積可以轉(zhuǎn)化為規(guī)則的立體圖形來計(jì)算。
【設(shè)計(jì)意圖】通過回顧解決問題的過程,幫助學(xué)生把本環(huán)節(jié)的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)進(jìn)行總結(jié),引導(dǎo)學(xué)生在后續(xù)的學(xué)習(xí)中碰到相似的問題也可同樣利用轉(zhuǎn)化的思想來解決。
(三)練習(xí)鞏固,學(xué)以致用
1.?dāng)?shù)學(xué)書P27做一做。
。1)學(xué)生獨(dú)立思考,解決問題。
。2)把自己的想法與同桌說一說。
。3)交流反饋:重點(diǎn)交流如何轉(zhuǎn)化,倒置后哪兩部分體積不變?
求小明喝了多少水實(shí)際上是求礦泉水瓶上面無水部分的體積,這部分為不規(guī)則的立體圖形。
將水瓶倒置后不規(guī)則容器轉(zhuǎn)化成了圓柱:該圓柱體積=小明喝了的水。
3.14×(6÷2)2×10=282.6(毫升)。
2.輸液100毫升,每分鐘輸2.5毫升,請觀察第12分鐘時(shí)吊瓶圖像中的數(shù)據(jù)。問整個(gè)吊瓶的容積是多少毫升?
。1)請學(xué)生計(jì)算,并反饋訂正。
(2)反饋要點(diǎn):
整個(gè)吊瓶容積=圖像中空氣部分的容積+還剩下液體的體積。
根據(jù)圖象,可以得出在第12分鐘吊瓶有80毫升是空的。
剩下液體的體積=100-2.5×12=70(毫升)。
即整個(gè)吊瓶容積=80+70=150(毫升)。
【設(shè)計(jì)意圖】從生活中常見的吊瓶問題引出,感受數(shù)學(xué)與生活的密切聯(lián)系,能根據(jù)圖像提取解決問題的有效信息 ,既提升了所學(xué)知識(shí),又關(guān)注了學(xué)生的思考,培養(yǎng)學(xué)生的分析、解決問題能力。
3.如下圖,一個(gè)底面周長為9.42厘米的圓柱體,從中間斜著截去一段后,它的體積是多少?
。1)思考:這是一個(gè)不規(guī)則的立體圖形,要求它的體積,它不能像瓶子里的水一樣可以流動(dòng)變形轉(zhuǎn)化,怎么辦?
(2)討論方法:
A.重疊:假設(shè)把兩個(gè)大小一樣的斜截體拼成一個(gè)底面周長為9.42厘米,高為(4+6)厘米的圓柱,這個(gè)立體圖形的體積是新圓柱體積的一半。
B.切割:把這個(gè)立體圖形分為兩部分,下面是一個(gè)底面周長為9.42厘米,高為4厘米的圓柱體,上面是一個(gè)高為(6-4)厘米的圓柱斜截體,且體積是高為(6-4)厘米的圓柱體積的一半。
。3)用自己認(rèn)可的方法計(jì)算,并進(jìn)行反饋。
解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
。4)反饋小結(jié):可以有不同的轉(zhuǎn)化方法來解決問題。
【設(shè)計(jì)意圖】不滿足于一種方法的轉(zhuǎn)化,展示多種方法,開拓學(xué)生的思維。
(四)全課總結(jié),提升認(rèn)識(shí)
教師:回憶一下,今天這節(jié)課有什么收獲?
教師和學(xué)生共同小結(jié):求不規(guī)則的立體圖形的體積可以將它轉(zhuǎn)化成為規(guī)則的立體圖形,這節(jié)課我們主要是將不規(guī)則的立體圖形轉(zhuǎn)化成為圓柱,用圓柱的體積計(jì)算方法來解決問題。
在解決問題時(shí),主要要弄清楚轉(zhuǎn)化前后兩部分之間的關(guān)系。
【設(shè)計(jì)意圖】通過小結(jié),讓學(xué)生自主地對(duì)回顧本課所學(xué)知識(shí)進(jìn)行梳理總結(jié),通過歸納與提煉,讓學(xué)生明確轉(zhuǎn)化思想在數(shù)學(xué)學(xué)習(xí)中的重要性。
【《圓柱的體積》教學(xué)設(shè)計(jì)】相關(guān)文章:
《圓柱的體積》教學(xué)設(shè)計(jì)02-09
“圓柱的體積”教學(xué)設(shè)計(jì)02-18
數(shù)學(xué)《圓柱的體積》教學(xué)設(shè)計(jì)05-01
《圓柱的體積》的課程教學(xué)設(shè)計(jì)12-13
《圓柱的體積》教學(xué)設(shè)計(jì)(精選10篇)03-22
《圓柱的體積》教學(xué)設(shè)計(jì)6篇02-09
《圓柱的體積》教學(xué)設(shè)計(jì)(6篇)02-09