《比例》教學(xué)設(shè)計(jì)
在教學(xué)工作者實(shí)際的教學(xué)活動中,總不可避免地需要編寫教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)一般包括教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)步驟與時間分配等環(huán)節(jié)。一份好的教學(xué)設(shè)計(jì)是什么樣子的呢?下面是小編為大家收集的《比例》教學(xué)設(shè)計(jì),歡迎閱讀與收藏。
《比例》教學(xué)設(shè)計(jì)1
本周教學(xué)內(nèi)容為正反比例以及比例的運(yùn)用。這部分內(nèi)容是本冊教學(xué)的重點(diǎn)和難點(diǎn)。
一、教學(xué)內(nèi)容以及講義的設(shè)計(jì)調(diào)整。
在前幾周教學(xué)基礎(chǔ)上,本周課堂討論環(huán)節(jié)有所調(diào)整。之前,每次的題單設(shè)計(jì)取消,一是為了節(jié)省課堂時間,提升課堂效率;二是同步練習(xí)中的探究交流習(xí)題設(shè)計(jì)難度適中,便于學(xué)生自學(xué)指導(dǎo)。
實(shí)際進(jìn)行了幾次教學(xué)嘗試,課堂時間縮短了。
二、緊扣概念,理解正反比例的含義。
除了結(jié)合現(xiàn)實(shí)的實(shí)例外,教學(xué)中注意強(qiáng)化概念的理解和運(yùn)用。課堂上在理解的基礎(chǔ)上,增加記憶環(huán)節(jié)。讓學(xué)生人人熟識概念,逐個講解概念。通過講述再次鞏固概念,扎實(shí)掌握。
三、抓關(guān)鍵點(diǎn),理清解題思路。
比例的應(yīng)用,利用正反比例解決實(shí)際問題,關(guān)鍵點(diǎn)是:先找不變量。找準(zhǔn)不變量,再確定屬于什么比例。根據(jù)比例來確定解題方法。在教學(xué)中和練習(xí)中不斷強(qiáng)調(diào),怎樣找不變量,學(xué)生做題準(zhǔn)確率較高。
四、嘗試組建一對一輔導(dǎo)模式。
數(shù)學(xué)學(xué)困生占二成,之前的輔導(dǎo)難度較大,一時間不能保證;二精力顧不過來;三師生比較疲憊,效果難以保證。從上周末開始讓學(xué)生自己挑選師傅和輔導(dǎo)徒弟,從本周開始啟動結(jié)對輔導(dǎo)。運(yùn)行一周,目前效果良好。學(xué)困生的作業(yè)上交率明顯提升,輔導(dǎo)師傅積極性高,輔導(dǎo)跟進(jìn)到位,今后繼續(xù)堅(jiān)持,不斷調(diào)整。
以上反思,將繼續(xù)揚(yáng)長避短,不斷完善。
《比例》教學(xué)設(shè)計(jì)2
教學(xué)內(nèi)容
教科書第58-59頁例1,課堂活動及練習(xí)十三1-3題。
教學(xué)目標(biāo)
1.使學(xué)生理解反比例的意義,能正確判斷成反比例關(guān)系的量。
2.經(jīng)歷反比例意義的構(gòu)建過程,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和歸納概括能力。
3.使學(xué)生體會反比例與生活的聯(lián)系,進(jìn)行辯證唯物主義觀點(diǎn)的啟蒙教育。
教學(xué)重點(diǎn)
引導(dǎo)學(xué)生正確理解反比例的意義。
教學(xué)難點(diǎn)
正確判斷兩種量是否成反比例。
教學(xué)過程
一、復(fù)習(xí)舊知,感受新知
情景游戲:對口令
。1)同樣的面包單價:2元∕個。老師說個數(shù),學(xué)生對總價(對口令的同時用課件展示出下表)。
表1買同樣的面包
買的數(shù)量(個) 1 2 3 4 5……
總價(元) 2 4 6 8 10……
教師:面包總價與個數(shù)之間有什么關(guān)系呢?它們成什么比例?為什么?
反饋:面包的總價與個數(shù)成正比例。因?yàn)樗鼈兪莾煞N相關(guān)聯(lián)的量,面包個數(shù)擴(kuò)大或縮小若干倍,總價也隨著擴(kuò)大或縮小相同的倍數(shù),并且它們的比值(單價)一定。
根據(jù)學(xué)生的回答板書,成正比例的量所具有的三個特征:
、賰煞N相關(guān)聯(lián)的量②變化有規(guī)律③一定的量
。2)共有30個蘋果分給小朋友。老師說出小朋友的人數(shù),學(xué)生回答分得的蘋果個數(shù)。(對口令的同時用課件展示出下表)
表2 30個蘋果分給小朋友
小朋友的人數(shù)(人) 1 3 5 10……
每個小朋友分得個數(shù)(個)30 10 6 3……
從這個表中,你有什么發(fā)現(xiàn)?
反饋:小朋友的人數(shù)與每個小朋友分的個數(shù)的乘積都是30;它們是相關(guān)聯(lián)的兩種量;小朋友的人數(shù)越多,每個小朋友分得的蘋果個數(shù)就越少……
提問:小朋友的人數(shù)與每個小朋友分得的蘋果個數(shù)成正比例嗎?為什么?
教師:那么這兩種量到底是一種什么關(guān)系呢?今天我們就一起來學(xué)習(xí)新的知識。
二、對比探究,獲取新知
1.感知幾種不同的變化規(guī)律
(1)某旅游公司的導(dǎo)游帶領(lǐng)60名游客來到井岡山游覽,準(zhǔn)備分組活動,提出的分組建議如下表。
表3 60名游客在井岡山游覽
每組人數(shù) 3 5 6 15
組數(shù) 20 12 10 4
教師:誰來說說,你是怎樣算每組人數(shù)和組數(shù)的?
抽幾名學(xué)生說出自己的計(jì)算方法。
教師:從這個表中你發(fā)現(xiàn)了什么規(guī)律?
反饋:總?cè)藬?shù)60人沒變,每組人數(shù)和組數(shù)的乘積是一定的;每組的人數(shù)在擴(kuò)大,組數(shù)反而縮小……
。2)游覽的第一天晚上,導(dǎo)游寫了一篇情況總結(jié),要把它存入電腦。
表4打一篇稿子
每分打字(個) 120 100 75 50
所需時間(分) 25 30 40 60
教師:必須先算出哪個量?為什么?學(xué)生獨(dú)立計(jì)算,然后集體訂正。
(3)第二天,導(dǎo)游將帶領(lǐng)這批游客,行一段路程。
表5行一段路程
已行的路程(km) 1 2 3 4
剩下的路程(km) 19 18 17 16
填這個表時,你是怎樣想的?集體訂正。
表6行一段路程
路程(km) 12 20 24 36
時間(時) 3 5 6 9
集體訂正。
2.分類區(qū)別,概括意義
(1)教師:請同學(xué)們把這6張表進(jìn)行分類,你會怎么分?為什么這樣分?帶著這個問題,請同學(xué)們分組討論。
教師巡視,聽取各小組意見,加強(qiáng)指導(dǎo)。
。2)匯報(bào)交流
反饋1:表1,6分一類,表2,3,4,5分一類。
反饋2:表1,6分一類,表2,3,4分一類,表5單獨(dú)分成一類。
教師:為什么這樣分類?
引導(dǎo)學(xué)生說出:表1,6成正比例分一類;不成正比例的表2,3,4它們的乘積一定,分成一類;表5是和一定,單獨(dú)分成一類。
教師:現(xiàn)在我們一起來找出表2,3,4的共同特征。
學(xué)生1:每個表中的兩種量都相關(guān)聯(lián)。(板書:相關(guān)聯(lián))
學(xué)生2:一種量變化另一種量也隨著變化。
學(xué)生3:從變化規(guī)律上看,表2中,人數(shù)越多,每人分得的個數(shù)越少,人數(shù)越少,每人分得的個數(shù)越多。
學(xué)生4:表3中,每組的人數(shù)擴(kuò)大,組數(shù)反而縮。槐4中,每分打字的個數(shù)越少,所需要的時間反而越多……
教師簡單概括:一種量擴(kuò)大或縮小若干倍,另一種量反而縮小或擴(kuò)大相同的倍數(shù)。兩種量的變化方向正好相反。(板書:反)
學(xué)生5:表中兩種量相對應(yīng)的兩個數(shù)的乘積是一定的。(板書:積)
正比例是一種量擴(kuò)大或縮小若干倍,另一種量也隨著擴(kuò)大或縮小相同的倍數(shù);而表2,3,4中,是一種量擴(kuò)大或縮小若干倍,另一種量反而縮小或擴(kuò)大相同的倍數(shù)。
。3)概括得出反比例的意義
教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生概括得出:
兩種相關(guān)聯(lián)的量。
一種量擴(kuò)大或縮小若干倍,另一種量反而縮小或擴(kuò)大相同的倍數(shù)。
兩種量相對應(yīng)的兩個數(shù)的乘積是一定的。
這是你們自己總結(jié)概括出來的結(jié)論,那么,你能給它們?nèi)名字嗎?
。ń沂菊n題:反比例的意義)
像這樣的兩種量,叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
4.舉例
抽生說一說生活中還有哪些成反比例的量。
學(xué)生1:路程一定,所行的時間與速
5.區(qū)分
表5中,一段路程20km一定時,已行的路程和剩下的路程成比例嗎?為什么?
引導(dǎo)學(xué)生明確:雖然這也是兩種相關(guān)聯(lián)的量,但是它們的變化規(guī)律是增加或減少相同的數(shù),而不是擴(kuò)大或縮小相同的倍數(shù);它們的和一定,而不是商一定或積一定。所以,它們不成比例。
三、直觀操作,加深理解
1、完成第60頁課堂活動1題
教師:請同學(xué)們看第1題的要求。哪位同學(xué)愿意說說你看了題目后的想法?
2、完成第60頁課堂活動2題
3、完成第61頁課堂活動3題
四、鞏固練習(xí),深化認(rèn)識
練習(xí)十三1-3題,主要抓住正比例的本質(zhì)屬性“商一定”,反比例的本質(zhì)屬性“積一定”,要求學(xué)生獨(dú)立完成,再集體訂正。
五、課堂總結(jié)
今天,我們一起學(xué)習(xí)了什么?你有什么收獲?
《比例》教學(xué)設(shè)計(jì)3
教學(xué)目標(biāo)
1.使學(xué)生能正確判斷應(yīng)用題中涉及的量成什么比例關(guān)系.
2.使學(xué)生能利用正、反比例的意義正確解答應(yīng)用題.
3.培養(yǎng)學(xué)生的判斷推理能力和分析能力.
教學(xué)重點(diǎn)
使學(xué)生能正確判斷應(yīng)用題中的數(shù)量之間存在什么樣的比例關(guān)系,并能利用正反比例的意義來列出含有未知數(shù)的等式,從而正確利用比例知識解答應(yīng)用題.
教學(xué)難點(diǎn)
利用正反比例的意義正確列出等式.
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備.(課件演示:比例的應(yīng)用)
。ㄒ唬┡袛嘞旅婷款}中的兩種量成什么比例關(guān)系?
1.速度一定,路程和時間.
2.路程一定,速度和時間.
3.單價一定,總價和數(shù)量.
4.每小時耕地的公頃數(shù)一定,耕地的總公頃數(shù)和時間.
5.全校學(xué)生做操,每行站的人數(shù)和站的行數(shù).
。ǘ┮胄抡n
我們已經(jīng)學(xué)過了比例,正比例和反比例的意義,還學(xué)過了解比例,應(yīng)用這些比例的知識可以解決一些實(shí)際問題.這節(jié)課我們就來學(xué)習(xí)比例的應(yīng)用.
教師板書:比例的應(yīng)用
二、新授教學(xué).
。ㄒ唬┙虒W(xué)例1(課件演示:比例的應(yīng)用)
例1.一輛汽車2小時行駛140千米,照這樣的速度,從甲地到乙地共行駛5小時.甲乙兩地之間的公路長多少千米?
1.學(xué)生利用以前的方法獨(dú)立解答.
140÷2×5
。70×5
。350(千米)
2.利用比例的知識解答.
。1)思考:這道題中涉及哪三種量?
哪種量是一定的?你是怎樣知道的?
行駛的路程和時間成什么比例關(guān)系?
教師板書:速度一定,路程和時間成正比例
教師追問:兩次行駛的路程和時間的什么相等?
怎么列出等式?
解:設(shè)甲乙兩地間的公路長 千米.
。
2 =140×5
=350
答:兩地之間的公路長350千米.
3.怎樣檢驗(yàn)這道題做得是否正確?
《比例》教學(xué)設(shè)計(jì)4
一、教材分析
反比例函數(shù)是初中階段所要學(xué)習(xí)的三種函數(shù)中的一種,是一類比較簡單但很重要的函數(shù),現(xiàn)實(shí)生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學(xué)是基礎(chǔ)。
二、學(xué)情分析
由于之前學(xué)習(xí)過函數(shù),學(xué)生對函數(shù)概念已經(jīng)有了一定的認(rèn)識能力,另外在前一章我們學(xué)習(xí)過分式的知識,因此為本節(jié)課的教學(xué)奠定的一定的基礎(chǔ)。
三、教學(xué)目標(biāo)
知識目標(biāo):理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達(dá)式.
解決問題:能從實(shí)際問題中抽象出反比例函數(shù)并確定其表達(dá)式. 情感態(tài)度:讓學(xué)生經(jīng)歷從實(shí)際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實(shí)際.
四、教學(xué)重難點(diǎn)
重點(diǎn):理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.
難點(diǎn):反比例函數(shù)表達(dá)式的確立.
五、教學(xué)過程
。1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運(yùn)行時間t(單位:h)的變化而變化;
。2)某住宅小區(qū)要種植一個面積1000m2的矩形草坪,草坪的長y(單
位:m)隨寬x(單位:m)的變化而變化。
請同學(xué)們寫出上述函數(shù)的表達(dá)式
14631000(2)y= tx
k可知:形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=
是自變量,y是函數(shù)。
此過程的目的在于讓學(xué)生從實(shí)際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實(shí)際. 由于是分式,當(dāng)x=0時,分式無意義,所以x≠0。
當(dāng)y= 中k=0時,y=0,函數(shù)y是一個常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時y就不是反比例函數(shù)了。
舉例:下列屬于反比例函數(shù)的是
。1)y= (2)xy=10 (3)y=k-1x (4)y= -
此過程的目的是通過分析與練習(xí)讓學(xué)生更加了解反比例函數(shù)的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設(shè)其解析式(函數(shù)關(guān)系式)
已知y與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
k x?1
k已知y+1與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
已知y+1與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= k x?1此過程的目的是為了讓學(xué)生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。
例:已知y與x2反比例,并且當(dāng)x=3時y=4
(1)求出y和x之間的函數(shù)解析式
。2)求當(dāng)x=1.5時y的值
解析:因?yàn)閥與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2
和x之間的函數(shù)解析式。之后引導(dǎo)學(xué)生書寫過程。能從實(shí)際問題中抽象出反比例函數(shù)并確定其表達(dá)式最后學(xué)生練習(xí)并布置作業(yè)
通過此環(huán)節(jié),加深對本節(jié)課所內(nèi)容的認(rèn)識,以達(dá)到鞏固的目的。
六、評價與反思
本節(jié)課是在學(xué)生現(xiàn)有的認(rèn)識基礎(chǔ)上進(jìn)行講解,便于學(xué)生理解反比例函數(shù)的概念。而本節(jié)課的重點(diǎn)在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.應(yīng)該對這一方面的內(nèi)容多練習(xí)鞏固。
《比例》教學(xué)設(shè)計(jì)5
教學(xué)目標(biāo):
1、理解比例尺的含義,掌握求比例尺的方法,能正確求出一幅圖的比例尺。
2、認(rèn)識數(shù)值比例尺和線段比例尺,能將線段比例尺改成數(shù)值比例尺,將數(shù)值比例尺改成線段比例尺。
教學(xué)重點(diǎn):
理解比例尺的含義。
教學(xué)難點(diǎn):
認(rèn)識線段比例尺和數(shù)值比例尺,并進(jìn)行互化。
教學(xué)準(zhǔn)備:
課件、直尺
教學(xué)過程:
一、定向?qū)W(xué)(5分)
1、填空:
1千米= ( )m =( )cm
60000cm=( )m =( )km
千米化成厘米數(shù),把小數(shù)點(diǎn)向( )移動( )位。
厘米化成千米數(shù),把小數(shù)點(diǎn)向( )移動( )位。
2、導(dǎo)入:
腦筋急轉(zhuǎn)彎:一只螞蟻從北京爬到上海只用了10秒鐘,這是為什么?
在繪制地圖和其他平面圖的時候,需要把實(shí)際距離按一定的比縮小(或擴(kuò)大),再畫在圖紙上。這時,就要確定圖上距離和相對應(yīng)的實(shí)際距離的比。這就是我們今天要認(rèn)識的新朋友---比例尺。板書課題。
3、出示學(xué)習(xí)目標(biāo):
(1)理解比例尺的含義,掌握求比例尺的方法,能正確求出一幅圖的比例尺。
。2)認(rèn)識數(shù)值比例尺和線段比例尺,能將線段比例尺改成數(shù)值比例尺,將數(shù)值比例尺改成線段比例尺。
二、自主學(xué)習(xí)(8分)
我們中華人民共和國富源遼闊,有960萬平方千米,怎樣才能把她畫在小小的圖紙上:這幅圖就要用1:4500000的縮小比例尺把她畫在地圖上。幸福路小學(xué)的面積也比較大,也要用1:1200的縮小比例尺把她縮小畫在平面圖中。下面,我們先來自主學(xué)習(xí)。(出示自主學(xué)習(xí)題目)
學(xué)習(xí)內(nèi)容:課本53頁內(nèi)容。
學(xué)習(xí)方法:先獨(dú)立看書,用筆畫出重點(diǎn),再回答下列問題:(5分鐘之后,比一比,看誰能做對檢測題。
1、( ),叫做這幅圖的比例尺。
。 )
2、( ):( )=比例尺 或 =比例尺
( )
3、為了計(jì)算方便,一般把比例尺寫成前項(xiàng)或后項(xiàng)是( )的形式。
4、北京到天津的實(shí)際距離是120km,在一副地圖上量得兩地的圖上距離是2.4cm。這副地圖的比例尺是多少?(請第4組的b1板演)
5、一副中國地圖的比例尺是1:100000000,這是( )比例尺,表示圖上1厘米相當(dāng)于實(shí)際的( )m或( )km。圖上距離是實(shí)際距離的( ),實(shí)際距離是圖上距離的`( )倍。
6、一副北京地圖的比例尺是: ,這是( )比例尺,表示圖上的1cm相當(dāng)于實(shí)際的( )km。
學(xué)完之后,讓每組的b1回答。
最后再提問:觀察對比,數(shù)值比例尺和線段比例尺的不同之處?
指名回答:數(shù)值比例尺不帶單位;線段比有一條1厘米長的線段,并且線段的第一個端點(diǎn)上的數(shù)字是0,第二個端點(diǎn)上有一個帶單位的數(shù)字。數(shù)值比例尺和線段比例尺的形式不同。
三、合作交流(12分)
在我們的日常生活中,除了用到縮小比例尺,把把實(shí)際距離按一定的比縮小畫在圖紙上,有時,也會根據(jù)需要,用到放大比例尺,把實(shí)際距離按一定的比擴(kuò)大,再畫在圖紙上,比如:在繪制比較精細(xì)的零件圖時,經(jīng)常需要把零件的尺寸按一定的比放大,再畫在圖紙上。再比如七星瓢蟲實(shí)際長度只有5mm,本圖就用8:1的放大比例尺把它畫在圖紙上。下面,我們來進(jìn)行合作學(xué)習(xí)。(出示合作交流)
1、一個零件的長為3厘米,畫在紙上的長為6厘米, 這幅圖的比例尺是( ),它表示:圖上的()厘米相當(dāng)于實(shí)際的( )厘米,圖上距離是實(shí)際距離的( )。這是把零件()了。
2、比例尺1:10和10:1相同嗎?( )
比例尺1:10表示:( ),是( )比例尺,()項(xiàng)是1。
比例尺10:1表示:( ),是( )比例尺,()項(xiàng)是1 。
3、比例尺的分類:
按形式分 ( )例如:( )
。 )例如:( )
按用途分 ( )例如:( )
( )例如:( )
四、質(zhì)疑探究 (5分)
1、一副地圖的比例尺是1:300000,你能用 線段比例尺表示出來嗎?
0 600m
2、一幅地圖的比例尺是 ,你能用 數(shù)值比例尺表示出來嗎?
五、小結(jié)檢測(10分)
。ㄒ唬┬〗Y(jié):
1、這節(jié)課你學(xué)會了什么知識?
2、關(guān)于比例尺你認(rèn)為需要注意什么?
(1)數(shù)值比例尺與一般的尺不同,它是一個比,不應(yīng)帶有計(jì)量單位。
。2)求比例尺時,前、后項(xiàng)的長度單位一定要化成同級單位。
。3)為了計(jì)算方便,通常把數(shù)值比例尺寫成前項(xiàng)或后項(xiàng)是1的比。
。ǘz測:
一、填空:
1、1:5000000表示( )
2、5:1表示( )
0 40km
3、 表示( )
4、在比例尺是1:4000000的地圖上,圖上距離是實(shí)際距離的( ),實(shí)際距離是圖上距離的( )倍,把這個數(shù)值比例尺改成線段比例尺是( )。
二、解決
問題。
1、一條跑道全長200米,在圖紙上的長度是10厘米。這幅圖紙的比例尺是多少?
2、一個零件的實(shí)際長度是8毫米,在設(shè)計(jì)圖上用4厘米表示。這幅設(shè)計(jì)圖的比例尺是多少?
板書設(shè)計(jì):
比例尺
圖上距離
圖上距離:實(shí)際距離=比例尺 或 =比例尺
實(shí)際距離
數(shù)值比例尺 例如1:10000
按形式分
線段比例尺 例如:
縮小比例尺 例如:1:12000
按用途分
放大比例尺 例如: 6:1
《比例》教學(xué)設(shè)計(jì)6
課題:按比例分配
教學(xué)目標(biāo):
1、使學(xué)生理解按比例分配實(shí)際問題的意義。
2、使學(xué)生通過運(yùn)用比的意義和基本性質(zhì)解答有關(guān)按比例分配的實(shí)際問題。
教學(xué)重點(diǎn)、難點(diǎn):理解按比例分配實(shí)際問題的意義,掌握解題的關(guān)鍵。
對策:
引導(dǎo)學(xué)生分析明晰題意。
教學(xué)預(yù)案:
一、 基本訓(xùn)練:
1、根據(jù)信息你想到了什么?
六2班男生與女生的比是4:5
。1) 男生是4份,女生是5份,一共是9份;
。2) 男生相當(dāng)于女生的4/5,女生相當(dāng)于男生的5/4
。3) 男生占全班人數(shù)的4/9,女生占全班人數(shù)的5/9
2、根據(jù)已知條件回答問題:(第76頁上第6題)
二、自主探究:
1、 出示例題5題目和方格圖,讓學(xué)生獨(dú)立完成,先算一算,再涂一涂。
2、 組織交流:你是怎樣解決這個問題的?你是怎樣想的?
生1:根據(jù)紅色與黃色方格數(shù)的比是3:2,可以想到:把30個方格平均分成5份,3份涂紅色,黃色涂2份。
列成算式是:
30(3+2)=305=6(格) 每一份有幾格
因?yàn)榧t色有這樣的3份,所以紅色:63=18(格)
因?yàn)辄S色用這樣的2份,所以黃色:62=12(格)
教師追問:怎樣驗(yàn)證這個答案是正確的?
生2:根據(jù)紅色與黃色方格數(shù)的比是3:2,可以想到:紅色方格占總格數(shù)的3/5,黃色方格占總格數(shù)的2/5
列成算式:
紅色:303/(3+2)=303/5=18(格)
黃色:302/(3+2)=302/5=12(格)
3、你是用哪種方法解決的?這兩種方法你都理解嗎?和你的同桌再說說解題思路。
三、理解體會:
1、出示第75頁上的試一試:
。1) 齊讀要求,提問:現(xiàn)在將這些方格按怎樣的比來分配?說說1:2:3是什么意思?
。2) 獨(dú)立完成,組織交流。
2、你覺得今天的問題已知什么?(已知總數(shù)和分配的比,將總數(shù)按一定比分割成幾部分)要求的是什么?(將求按這樣分配后的各部分的結(jié)果分別是多少?)
像這樣,將總數(shù)按一定的比進(jìn)行分割成幾部分,我們稱之為按比例分配問題。(出示課題:按比例分配問題。)
3、在解決時我們關(guān)鍵要理解是按怎樣的比來分配。解答時可以怎樣想?(轉(zhuǎn)化成整數(shù)問題,先求出一份是多少?再求出這樣的幾份是多少?)還可以怎樣想?(先轉(zhuǎn)化成要求的量分別是總數(shù)的幾比幾,再按分?jǐn)?shù)乘法問題進(jìn)行計(jì)算)
四、鞏固提高
1、練一練第1題:學(xué)生獨(dú)立完成,指名板演,組織交流。
2、練一練第2題:提問:在這里將180塊巧克力怎么分配?你從那句話中看出來的?幫助學(xué)生理解把180按35:31:24進(jìn)行分配。
3、練習(xí)十四第2題:讀題理解要求,引導(dǎo)學(xué)生看圖估計(jì)出已用去的時間與剩余時間的比,并說出是怎樣想的。(把圖中的白色部分平均分成兩份,可以看出已用去的時間與剩下時間的比大約是1:2。)那么這題實(shí)質(zhì)是求什么?(將90分鐘時間按1:2進(jìn)行分配,求比賽剩下的時間是多少分?)
4、練習(xí)十四第4題:
先讓學(xué)生獨(dú)立思考一會兒,再組織交流:這題符合今天的特征嗎?那要分配的總數(shù)是什么?(引導(dǎo)學(xué)生注意隱含條件:三角形的內(nèi)角和是180度)現(xiàn)在你會解決嗎?
5、補(bǔ)充:
出示一條線段,要求按1:5將線段分成兩部分。
學(xué)生獨(dú)立操作完成,組織交流。
五、全課總結(jié):通過今天的學(xué)習(xí),你有什么收獲?
轉(zhuǎn)化解答按比例分配問題的策略。
按比例分配是把一個數(shù)量按照一定的比進(jìn)行分配。解決一些常見的、較簡單的按比例分配問題,能在實(shí)際應(yīng)用中加強(qiáng)比的概念。
按比例分配問題可以采用不同的思路和方法來解答。例5的編排在建立比的概念之后,適宜用比的知識解答。兔子卡通把比看作份數(shù),小鳥卡通把比看作分?jǐn)?shù),都是從3∶2的具體含義出發(fā),經(jīng)過推理形成解題思路的。也可以先在教材的方格圖上,通過涂色得到啟發(fā)。如果每次涂5個方格,其中3個紅色方格、2個黃色方格,那么要6次(305=6)剛好涂完。所以紅色方格一共有3053=18(格),黃色方格一共有3052=12(格)。如果把方格圖里的3行(列)涂紅色、2行(列)涂黃色,那么就能直觀看到紅色方格是30格的3/5,黃色方格是30格的2/5,所以兩種顏色的格數(shù)分別用303/5和302/5計(jì)算。
教學(xué)例題時要溝通兩種解法的聯(lián)系,要提倡小鳥卡通的方法,突出按比例分配問題轉(zhuǎn)化成求一個數(shù)的幾分之幾是多少的問題,引導(dǎo)學(xué)生用分?jǐn)?shù)乘法來解決問題。
試一試?yán)锍霈F(xiàn)了1∶2∶3,對連比的概念不需要作過多解釋。學(xué)生會從兩個數(shù)的比來體會這個連比的含義,只要能夠說出紅色方格占1份、黃色方格占2份、綠色方格占3份,就能應(yīng)用解答例5的經(jīng)驗(yàn)完成這道題。
練一練第2題給出了幼兒園大班、中班、小班各有的人數(shù),把180塊巧克力按班級人數(shù)的比分配。這道題變式呈現(xiàn)按比例分配的問題,沒有直接給出班級人數(shù)比,要求學(xué)生根據(jù)人數(shù)先想出比,然后按比例分配。教師要重點(diǎn)幫助學(xué)生理解把180塊巧克力按班級人數(shù)的比分給三個班就是把180按35:31:24進(jìn)行分配。這道題還是解答練習(xí)十四第2、8題的平臺。
課后反思:
本課時的教學(xué)內(nèi)容是引導(dǎo)學(xué)生應(yīng)用比的意義和基本性質(zhì)解答有關(guān)按比例分配的實(shí)際問題。由于在學(xué)習(xí)比的意義時學(xué)生已能根據(jù)兩個數(shù)量間的比用分?jǐn)?shù)來表述兩者的關(guān)系,所以在教學(xué)例題5時,我給學(xué)生充分獨(dú)立思考和解答的時間,讓學(xué)生自主進(jìn)行探索。在交流解法時,很多學(xué)生思維活躍,發(fā)言積極,想出了很多種解法。這時我再及時引導(dǎo)學(xué)生將這些方法進(jìn)行總結(jié),并突出了用分?jǐn)?shù)乘法來解題的這種方法。在新知的學(xué)習(xí)中,我還請學(xué)生思考如何進(jìn)行檢驗(yàn),學(xué)生們聯(lián)系題中的信息想到了可以將求出的兩個數(shù)量組成比進(jìn)行化簡,再將這兩個數(shù)量的和求出來,與已知信息進(jìn)行比較進(jìn)行檢驗(yàn)。
整節(jié)數(shù)學(xué)課上,鼓勵學(xué)生獨(dú)立思考,主動探索,充分發(fā)揮學(xué)生學(xué)習(xí)主動性,課堂氣氛活躍、和諧,提高了課堂教學(xué)效率的有效性。
課前思考:
按比例分配是一種分配思想,在生活生產(chǎn)中是很常見的。已學(xué)過的平均分配其實(shí)是按比例分配的一種特例。教學(xué)中要通過解決實(shí)際生活中的問題,讓學(xué)生了解在生產(chǎn)生活中要把一個量按照一定的比例來分配,從而感悟按比例存在的價值。
學(xué)生在平時有一定的體驗(yàn),所以在新知形成過程中,首先讓學(xué)生根據(jù)原有的知識嘗試解決問題,變被動接受學(xué)習(xí)為主動研究性學(xué)習(xí)。其次,鼓勵解決問題策略的多樣化,并充分展示學(xué)生的思考過程。在解決問題的過程中使學(xué)生體會到同一問題可以從不同角度去思考,得到不同解決問題的方法,這有利于學(xué)生多向思維的發(fā)展。
課后反思:
在練習(xí)十四第4題后,進(jìn)行相應(yīng)的練習(xí)后,出示一道練習(xí)題:一個三角形的三個內(nèi)角度數(shù)的比是2∶3∶4,這個三角形是什么三角形?
生1:是銳角三角形,因?yàn)橥ㄟ^計(jì)算,我知道三個內(nèi)角分別是40,60,80所以是銳角三角形。
師:你講得非常好。
生2:不要把三個角都求出來,只要求一個最大的角就行了:1804/9=80,所以是銳角三角形。
師:你分析問題的方式很獨(dú)特,分析得很有道理。
生3:其實(shí)一個角也不用求,就知道它是銳角三角形,因?yàn)槿齻角加起來是9份,而最大的角只占4份,沒有達(dá)到9份的一半,也就是它的度數(shù)沒有達(dá)到180的一半,所以是銳角三角形。
說句實(shí)在話,當(dāng)時我都有點(diǎn)聽蒙了。
師:哪個同學(xué)能把的想法重說一遍?
生4:
師:那如果三個內(nèi)角的度數(shù)比是2∶3∶5呢?或者是2∶3∶7呢?又各是什么三角形呢?
反思中的反思:
學(xué)生是可畏的,更是可敬的。在練習(xí)階段,學(xué)生能運(yùn)用所學(xué)的知識和原有的經(jīng)驗(yàn)解決問題,在寬松、和諧、民主的氛圍中,學(xué)生思維是如此的活躍,方法是如此的靈活,體現(xiàn)了思維的價值,很好地詮釋了嘗試從不同角度尋求解決問題的方法,并能有效地解決問題的新課程精神。
課后反思:
這課內(nèi)容按照知識點(diǎn)來劃分屬于按比例分配內(nèi)容,解決這類問題的策略有兩個:一是將比轉(zhuǎn)化成份數(shù)來理解,先求出每一份是多少;二是將比轉(zhuǎn)化成分?jǐn)?shù),然后按照分?jǐn)?shù)應(yīng)用題來解答。這兩種方法共同的數(shù)學(xué)思想方法是轉(zhuǎn)化。
在課堂教學(xué)中,學(xué)生能結(jié)合具體圖例,自己想到這兩種解答方法,在師生的進(jìn)一步對話中,體會到用這兩種方法解答時,都得滲透對應(yīng)思想。
《比例》教學(xué)設(shè)計(jì)7
教學(xué)過程 :
一、導(dǎo)人新課
教師:上節(jié)課我們學(xué)習(xí)了一些比例尺的知識,我們學(xué)過的比例尺都是用數(shù)值來標(biāo)明的,如比例尺1:10000就表示圖上距離是l厘米實(shí)際距離就是10000厘米,像這樣的比例尺叫做數(shù)值比例尺。除了數(shù)值比例尺外,還有。什么是線段比例
尺呢:這就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。(板書課題)
二、新課
教師:是在圖上附有一條注有數(shù)量的線段。用來表示和地面上相對應(yīng)的實(shí)際距離。同學(xué)們可以翻開教科書第16頁.看右下角有一幅地圖。地圖的下面就 有一條。它上面有0、50和100幾個數(shù),還注明了長度單位千米。這些數(shù)和單位表示什么意思呢?大家量一量從0到50這段線段有多長。(1厘米。)從50到100呢?(也是1厘米。)從0到50就表示地圖上1厘米的距離相當(dāng)于地面上50千米的實(shí)際距離。從0到100就表示地圖上2厘米的距離相當(dāng)于地面上100千米的實(shí)際距 離。
然后教師問:
l如果知道了兩個城市之間的圖上距離,你能不能計(jì)算出這兩個城市之間的實(shí)際距離?
讓學(xué)生在地圖上找到沈陽和長春這兩個城市,并量出它們的距離是多少厘米。再想一想:要求地面上這兩個城市之間的實(shí)際距離大約是多少千米,該怎樣計(jì)算?
引導(dǎo)學(xué)生想:1厘米.的圖上距離代表地面上多少千米的實(shí)際距離,(50千米。)我們量出沈陽到長春的圖上距離是5.5厘米,就代表幾個50千米的實(shí)際距離。(5.5個50千米。)怎么列式計(jì)算?
讓學(xué)生說怎樣列式。教師板書:505.5=275(千米)
之后,進(jìn)一步提出:
你能不能把這個地圖上的改寫成數(shù)值比例尺?怎樣改寫?(因?yàn)閳D上1厘米相當(dāng)于地面上50千米的實(shí)際距離,現(xiàn)在圖上距離和實(shí)際距離的單位不同,根據(jù)圖上距離:實(shí)際距離=比例尺,要把圖上距離和實(shí)際距離的單位化成同級單位,50
千米等于5000000厘米。所以這條改寫成數(shù)值比例尺就是1:5000000。)
教師板書出數(shù)值比例尺。
三、課堂練習(xí)
完成練習(xí)五的第49題:
1.第5題,讓學(xué)生獨(dú)立填表:填表前,要提醒學(xué)生圖上距離的單位應(yīng)用什么,實(shí)際距離的單位應(yīng)用什么。
2.第8題,讓學(xué)生獨(dú)立計(jì)算。集體訂正后,讓學(xué)生按照東南西北的方位說說拖拉機(jī)站、電影院、汽車站和供銷社離學(xué)校的距離。如,電影院在學(xué)校的南面,距學(xué)校200米;拖拉機(jī)站在學(xué)校的西北面,距學(xué)校2500米。
3.第9題,讓學(xué)生先求出試驗(yàn)田長和寬的圖上距離,然后畫出平面圖,并且要注意在平面圖上注明比例尺。
《比例》教學(xué)設(shè)計(jì)8
教學(xué)目的:
1.在實(shí)踐活動中體驗(yàn)生活中需要的比例尺,能讀懂兩種形式的比例尺。
2.在操作、觀察、思考、歸納等學(xué)習(xí)活動中理解比例尺的意義,正確計(jì)算比例尺,了解比例尺在實(shí)際生活中的各種用途。
教學(xué)重點(diǎn):
理解比例尺的意義
教學(xué)難點(diǎn):
把線段比例轉(zhuǎn)換成數(shù)值比例尺
教學(xué)過程:
一、激發(fā)興趣,引入比例尺
腦筋急轉(zhuǎn)彎
師:坐公共汽車從沙市紅星路到荊州火車站,一共要用50分鐘,但有只螞蟻從沙市紅星路爬到荊州火車站卻只用了40秒鐘。你知道是怎么回事嗎?
生猜:螞蟻可能在地圖上爬。
師:對了。螞蟻爬的是從沙市紅星路至荊州火車站的圖上距離,而人們坐車所行的是從沙市紅星路到荊州火車站的實(shí)際距離。
師:那圖上距離與實(shí)際距離之間有什么關(guān)系呢?讓我們先來做個游戲。
二、動手操作,認(rèn)識比例尺
1、操作計(jì)算。
師:你們喜歡畫畫嗎?那我們來個最簡單的——畫線段游戲。我說物品的長度,你用線段畫出它的長,行嗎?
、傧鹌らL5厘米
、趫A規(guī)長11厘米
③米尺長1米
師:咦?怎么不畫了?
生:畫不下。
師:那怎么辦呀?快想想,有什么好辦法,可以把1米畫到紙上去?
生:可以把1米縮小若干倍后畫在紙上。
師:這個辦法不錯。就用這種方法畫吧。
學(xué)生畫完,集體交流。
師:你是用圖上幾厘米的線段來表示實(shí)際1米的呢?
教師有選擇的板書:
師:像2厘米、5厘米、10厘米這些在圖上畫出的線段的長度,我們叫“圖上距離”,而這1米就叫“實(shí)際距離”。
師:你能用比表示出圖上距離與實(shí)際距離的關(guān)系嗎?
教師指名回答,并板書計(jì)算過程。
2、揭示比例尺的意義。
(1)初步理解比例尺的意義
師:其實(shí)像這樣一幅圖的圖上距離與實(shí)際距離的比,就叫這幅圖的比例尺。這就是我們這節(jié)課所要學(xué)習(xí)的內(nèi)容—比例尺(板書課題及關(guān)系式)根據(jù)比與分?jǐn)?shù)的關(guān)系,我們還可以把它寫成圖上距離/實(shí)際距離=比例尺。(板書)
師:下面每位同學(xué)算出自己的比例尺。
。ㄉ(dú)立計(jì)算后匯報(bào)結(jié)果,師板書)
師:同樣是1米的米尺的線段圖,為什么它的比例尺卻不一樣呢?(縮小的倍數(shù)不同)
師:同學(xué)們,你們還記得我們上課前所說的最后一道腦筋轉(zhuǎn)彎的題目嗎?原來坐車是從沙市紅星路到荊州的火車站實(shí)際距離約是18千米,而螞蟻行的是30厘米的圖上距離,怪不得只要3秒呢!那么,你能求出這副地圖的比例尺嗎?
。▽W(xué)生做前先交流)
師:大家交流一下,誰能告訴大家首先要做什么事情?
師:先寫出圖上距離與實(shí)際距離的比,再把千米化成厘米,也就是說我們在求比例尺的時候,首先寫出比,再把單位統(tǒng)一起來,最后化簡比。(板書1. 寫出比。2. 單位統(tǒng)一。3. 化簡比)
學(xué)生匯報(bào)計(jì)算結(jié)果
讓能說說求一幅圖的比例尺的方法是怎樣的?
對應(yīng)練習(xí):
完成課本第49頁“做一做”
(2)聯(lián)系生活,進(jìn)一步理解比例尺
師:你還在哪里見過比例尺?
生1:大型建筑。
生2:房屋裝修。
師:根據(jù)這幅圖的比例尺,你能用另一種說法說出圖上距離和實(shí)際距離的關(guān)系嗎?
。ㄗ寣W(xué)生說出圖上距離是實(shí)際距離的幾分之幾?實(shí)際距離是圖上距離的幾倍?)
三、認(rèn)真比較,深刻理解
1、比較比例尺,揭示數(shù)值比例尺的意義。
師:像1:1000000這樣的比例尺是數(shù)值比例尺。它也可以寫成1/1000000你。能說說比例尺1:100000000所表示的意思嗎?
生:距離是實(shí)際距離的一百萬分之一,實(shí)際距離是圖上距離的一百萬倍。
師: 你還見過怎樣的比例尺?(出示中國地圖)引出線段比例尺。
2、認(rèn)識線段比例尺。
師:把上面的線段比例尺改寫成數(shù)值比例尺。
1厘米:60千米
=1厘米:6000000厘米
=1:6000000
小結(jié):
線段比例尺和數(shù)值比例尺是比例尺的兩種基本形式。它們之間可以進(jìn)行轉(zhuǎn)換。把線段比例尺轉(zhuǎn)換成數(shù)值比例尺只要把寫出圖上距離與實(shí)際距離的比再化簡就可以了。
3、認(rèn)識把實(shí)際距離放大后的比例尺
同學(xué)們,剛才我們把米尺的實(shí)際距離縮小若干倍后畫在紙上,我們還求出了它的比例尺是1:100等,在實(shí)際生活中有沒有要把實(shí)際距離放大后再畫在圖上的呢(有)
。ǔ鍪救昙壙茖W(xué)書中螞蟻圖)
師:這是同學(xué)們?nèi)昙壙茖W(xué)書中螞蟻圖,他是把螞蟻放大后畫在書上,圖上螞蟻長6厘米,而螞蟻實(shí)際長6毫米。你能算出這幅圖的比例尺嗎?
。▽W(xué)生嘗試算出這幅圖的比例尺,指名板演)
出示一些精密零件的圖和圖紙,介紹把實(shí)際距離放大后的比例尺。
縱觀這節(jié)課所認(rèn)識的比例尺,思考下列問題:
1、比例尺與一般的尺相同嗎?化簡后的比例尺帶不帶單位?
2、求比例尺時,通常要做什么?
3、化簡后的比例尺,它的前項(xiàng)和后項(xiàng)一般是什么形式?
四、鞏固練習(xí),靈活運(yùn)用
1、小結(jié)看書。
2、練習(xí):
(一)填一填
。1)在比例尺是1:20xx的地圖上,圖上距離1厘米表示實(shí)際距離( )
(2)在比例尺是1:4000000的地圖上,圖上距離是實(shí)際距離的( ),實(shí)際距離是圖上距離的( )倍。
(3)出示一個線段比例尺表示圖上1厘米相當(dāng)于實(shí)際距離( )米,把這個比例尺改寫成數(shù)值比例尺是( )。
(二)判斷
。1)小華在繪制學(xué)校操場平面圖時,用20厘米的線段表示地面上40米的距離,這幅圖的比例尺為1︰2。
。2)某機(jī)器零件設(shè)計(jì)圖紙所用的比例尺為1︰1,說明了該零件的實(shí)際長度與圖上是一樣的。
(3)一幅圖的比例尺是6︰1,這幅圖所表示的實(shí)際距離大于圖上距離 .
六、談學(xué)后體會。
這節(jié)課你學(xué)到了什么?
《比例》教學(xué)設(shè)計(jì)9
一、知識與技能
1.從現(xiàn)實(shí)情境和已有的知識、經(jīng)驗(yàn)出發(fā)、討論兩個變量之間的相依關(guān)系,加深對函數(shù)、函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念.
二、過程與方法
1.經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點(diǎn).
2.經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識.
三、情感態(tài)度與價值觀
1.經(jīng)歷抽象反比例函數(shù)概念的過程,體會數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.
2.通過分組討論,培養(yǎng)學(xué)生合作交流意識和探索精神.
教學(xué)重點(diǎn):
理解和領(lǐng)會反比例函數(shù)的概念.
教學(xué)難點(diǎn):
領(lǐng)悟反比例的概念.
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
活動1
問題:下列問題中,變量間的對應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?
(1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;
(2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;
(3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.
師生行為:
先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問答或交流.學(xué)生用自己的語言說明兩個變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式.
教師組織學(xué)生討論,提問學(xué)生,師生互動.
在此活動中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:
①能否積極主動地合作交流.
、谀芊裼谜Z言說明兩個變量間的關(guān)系.
、勰芊窳私馑懻摰暮瘮(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.
分析及解答:(1);(2);(3)
其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);
上面的函數(shù)關(guān)系式,都具有的形式,其中k是常數(shù).
二、聯(lián)系生活,豐富聯(lián)想
活動2
下列問題中,變量間的對應(yīng)關(guān)系可用這樣的函數(shù)式表示?
。1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;
。2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;
。3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.
師生行為
學(xué)生先獨(dú)立思考,在進(jìn)行全班交流.
教師操作課件,提出問題,關(guān)注學(xué)生思考的過程,在此活動中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:
(1)能否從現(xiàn)實(shí)情境中抽象出兩個變量的函數(shù)關(guān)系;
(2)能否積極主動地參與小組活動;
(3)能否比較深刻地領(lǐng)會函數(shù)、反比例函數(shù)的概念.
分析及解答:(1);(2);(3)
概念:如果兩個變量x,y之間的關(guān)系可以表示成的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.
活動3
做一做:
一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
師生行為:
學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流.教師提出問題,關(guān)注學(xué)生思考.此活動中教師應(yīng)重點(diǎn)關(guān)注:
①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;
、趯W(xué)生能否順利抽象反比例函數(shù)的模型;
③學(xué)生能否積極主動地合作、交流;
活動4
問題1:下列哪個等式中的y是x的反比例函數(shù)?
問題2:已知y是x的反比例函數(shù),當(dāng)x=2時,y=6
(1)寫出y與x的函數(shù)關(guān)系式:
(2)求當(dāng)x=4時,y的值.
師生行為:
學(xué)生獨(dú)立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時引導(dǎo).在此活動中教師應(yīng)重點(diǎn)關(guān)注:
、賹W(xué)生能否領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念;
、趯W(xué)生能否積極主動地參與小組活動.
分析及解答:
1.只有xy=123是反比例函數(shù).
2.分析:因?yàn)閥是x的反比例函數(shù),所以,再把x=2和y=6代入上式就可求出常數(shù)k的值.
解:(1)設(shè),因?yàn)閤=2時,y=6,所以有解得k=12
三、鞏固提高
活動5
1.已知y是x的反比例函數(shù),并且當(dāng)x=3時,y= ?8.
(1)寫出y與x之間的函數(shù)關(guān)系式.
。2)求y=2時x的值.
2.y是x的反比例函數(shù),下表給出了x與y的一些值:
。1)寫出這個反比例函數(shù)的表達(dá)式;
(2)根據(jù)函數(shù)表達(dá)式完成上表.
學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺演示,教師要重點(diǎn)關(guān)注“學(xué)困生”.
四、課時小結(jié)
反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識,注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認(rèn)識到理發(fā)認(rèn)識一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過舉例、說理、討論等活動,感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象.
《比例》教學(xué)設(shè)計(jì)10
教學(xué)過程:
一、 創(chuàng)設(shè)情境,導(dǎo)入新課:
同學(xué)們,我們近段時間學(xué)了些什么知識?那么就請同學(xué)們運(yùn)用正比例、反比例的意義來判斷(課件出示判斷題)
1、判斷下面每題中的兩種量成什么比例關(guān)系?
。1)單價一定,總價和數(shù)量、
。2)每小時耕地的公頃數(shù)一定,耕地的總公頃數(shù)和時間、
(3)全校學(xué)生做操,每行站的人數(shù)和站的行數(shù)、
2、 說說速度、時間和路程這三個量存在怎樣的比例關(guān)系?
。ó(dāng)速度一定)
二、探究新知:
1、 導(dǎo)入新課:剛才同學(xué)們說得很好,說明前面所學(xué)的知識掌握得不錯,這節(jié)課學(xué)習(xí)怎樣應(yīng)用比例知識來解決生活中的實(shí)際問題。
板書課題:比例的應(yīng)用
2、學(xué)習(xí)例1.(課件出示例題 )
例1、一輛汽車2小時行駛140千米,照這樣的速度,從甲地到乙地共行駛5小時、甲乙兩地之間的公路長多少千米?
(1) 先讀題,想想:這種題型我們以前學(xué)過沒有,屬于哪類應(yīng)用題?該怎樣解答?再讓學(xué)生在草稿上獨(dú)立解答,然后指名說說解答方法。
。2)引導(dǎo)學(xué)生探究用比例知識解答。
提問:這道題能不能用比例知識來解答呢?
。ㄕn件出示問題,讓學(xué)生思考)
1、這道題中涉及哪三種量?(路程、時間和速度)
2、哪種量是一定的?你是怎樣知道的?(照這樣的速度就是說速度一定)
3、行駛的路程和時間成什么比例關(guān)系?(行駛的路程和時間成正比例關(guān)系)(指名說說思考過程)
。ㄕn件出示思考的過程,并齊讀)
。3) 提問: 根據(jù)正比例的意義可以列出怎樣的比例?
(教師根據(jù)學(xué)生的回答板書)
。4) 解這個比例。 (教師板書解答過程)
。5) 怎樣檢驗(yàn)所求的答案是否正確?(把求出的未知數(shù)代入原方程 ,看等式是否相等)
。6)寫出答語。
。7) 練習(xí):現(xiàn)在我們來看看,如果把例1的條件和問題改成下面的題,該怎樣解答?(課件出示練習(xí)題)
一輛汽車2小時行駛140千米,甲乙兩地之間的公路長350千米,照這樣的速度,從甲地到乙地需要行駛多少小時?
。8)學(xué)生解答后,指名說說和例1的解法有什么相同?(題中兩種量成正比例的關(guān)系沒有變,解答的方法也沒有變,只是所設(shè)的未知數(shù)為小時數(shù))。
。9)教師說明:例1和練習(xí)題都是根據(jù)正比例的意義列出的比例式,也是方程。
3、學(xué)習(xí)例2:
。ㄕn件出示例題)
(1)自主探究用比例知識解答
1 合作交流,小組討論:
題中有哪幾種量? 這幾種量之間有什么關(guān)系?根據(jù)比例的知識可以列出怎樣的方程?
2、匯報(bào)討論結(jié)果。
老師板書方程并提問: 這個方程是比例嗎?為什么?
3、師生一起解答。(完成例2的板書)
4、練習(xí):(課件出示練習(xí)題)
一輛汽車從甲地開往乙地,每小時行駛70千米,5小時到達(dá)。如果每小時行駛87.5千米,需要多少小時到達(dá)?
。▽W(xué)生獨(dú)立完成后,指名說說解答方法與例2的異同:題中兩種量成反比例的關(guān)系沒變,解答方法也沒變,只是所設(shè)未知數(shù)為小時數(shù)。)
4、 比較例1和例2的異同:(相同的是都是用比例解答的,不同的是例1是根據(jù)正比例的意義列出的比例式,例2是根據(jù)反比例的意義列出的等式。但它們都是方程。) 你能從例1、例2的解答中找出用比例的方法解答應(yīng)用題的關(guān)鍵是什么嗎?
5、教師小結(jié)。
。ㄕn件出示)通過例1、例2的解答,讓同學(xué)們歸納出:(用比例方法解答應(yīng)用題的關(guān)鍵是:先正確地找出題中兩種相關(guān)聯(lián)的量,判斷它們成什么比例關(guān)系,然后根據(jù)正、反比例的意義列出方程。)
三、知識應(yīng)用:(出示課件做一做)
1、食堂買來三桶油用780元,照這樣計(jì)算,買8桶油要用多少錢?
2、某種型號的鋼滾球,3個重22.5克,F(xiàn)有一些這種型號的滾球,共重945克,一共有多少個?
四、作業(yè):
練習(xí)中的1~4題。
五、課堂小結(jié):
結(jié)束語:
比例知識在日常生活中的應(yīng)用非常廣泛,比如要測量一顆大樹的高度,或是一根旗桿的高度,都可以用比例知識來解決。我們以后再去探討好不好?
《比例》教學(xué)設(shè)計(jì)11
【教學(xué)目標(biāo)】
1.使學(xué)生理解比例的意義,能應(yīng)用比例的意義判斷兩個比能否成比例。
2.在比的知識基礎(chǔ)上引出比例的意義,結(jié)合實(shí)例,培養(yǎng)學(xué)生將新、舊知識融會貫通的能力。
3.提高學(xué)生的認(rèn)知能力。
【教學(xué)重點(diǎn)】
比例的意義。
【教學(xué)難點(diǎn)】
找出相等的比組成比例。
【教學(xué)過程】
一、 舊知鋪墊
你能根據(jù)以前學(xué)過的知識來解決這幾個問題嗎?
1、什么是比?
(1)一輛汽車5小時行駛300千米,寫出路程與時間的比,并化簡。
(2)小明身高1.2米,小張身高1.4米,寫出小明與小張身高的比。
2、求下面各比的比值。
12 :16 1/3 :2/5 4.5 :2.7 10 :6
二、探索新知
1、用ppt課件出示課本情境圖。
(1)觀察課本情境圖。(不出現(xiàn)相片長、寬數(shù)據(jù))
、僬f一說各幅圖的情景。②圖中圖片有什么相同之處和不同之處?
(2)你知道這些圖片的長和寬是多少嗎?
(3)這些圖片的長和寬的比值各是多少?
A、6 ∶4= B、3∶2= C、3∶8 =
D、12∶8= E、12∶2=
(4)怎樣的兩張圖片像?怎樣的兩張圖片不像?
、貲和A兩張圖片,長與長、寬與寬的比值相等,12∶6=8∶4,所以就像。
②A長與寬的比是6∶4,B長與寬的比是3∶2,6∶4=3∶2,所以就也像。
2、認(rèn)一認(rèn)
圖D和圖A兩張圖片,長與長、寬與寬的比值相等,圖A和圖B兩張圖片長和寬的比值相等。
板書:12∶6=8∶4 6∶4=3∶2
(5)什么是比例?
板書:表示兩個比相等的式子叫做比例。
“從比例的意義我們可以知道,比例是由幾個比組成的?這兩個比必須具備什么條件?因此判斷兩個比能不能組成比例,關(guān)鍵是看什么?如果不能一眼看出兩個比是不是相等的,怎么辦?”
比例是由兩個相等的比組成的。在判斷兩個比能不能組成比例時,關(guān)鍵是看這兩個比是不是相等。如果不能一眼看出兩個比是不是相等,可以先分別把兩個比化簡以后再看。
(6)比較“比”和“比例”兩個概念。
上學(xué)期我們學(xué)習(xí)了“比”,現(xiàn)在又知道了“比例”的意義,那么“比”和“比例”有什么區(qū)別呢?
比是表示兩個數(shù)相除,有兩項(xiàng);比例是一個等式,表示兩個比相等,有四項(xiàng)。
(7)找比例。
在這四副圖片的尺寸中,你還能找出哪些比可以組成比例?學(xué)生猜想另外兩副圖片長、寬的比值。求出副圖片長、寬的比值,并組成比例。
如:3∶2 =12∶8 6∶4= 12∶8
3、(1)右表是調(diào)制蜂蜜水時蜂蜜和水的配比情況,根據(jù)比例的意義,你能寫出比例嗎?
(2)把組成的比例寫出來。
(3)說一說你是怎么寫的,一共可以寫多少個不同的比例。
三、課堂練習(xí)
1、⑴分別寫出圖中兩個長方形長與長的比和寬與寬
的比,判斷這兩個比能否組成比例。
、品謩e寫出圖中每個長方形與寬的比,判斷這兩個比能否組成比例。
2、哪幾組的兩個比可以組成比例?把組成的比例寫出來。 15∶18和30∶36 4∶8和5∶20 1/4∶1/16和0.5∶2 1/3∶1/9和1/6∶1/18
三、課堂小結(jié)
(1)什么叫做比例?
(2)一個比例式可以改寫成幾個不同的比例式?
【《比例》教學(xué)設(shè)計(jì)】相關(guān)文章:
《比和比例復(fù)習(xí)》教學(xué)設(shè)計(jì)04-05
《比例的基本性質(zhì)》教學(xué)設(shè)計(jì)03-31
小學(xué)《正比例》的教學(xué)設(shè)計(jì)05-11
《正比例》的教學(xué)設(shè)計(jì)范文05-11
關(guān)于《正比例》的教學(xué)設(shè)計(jì)范文05-13
比例的意義和基本性質(zhì)教學(xué)設(shè)計(jì)7篇03-17
工傷報(bào)銷比例06-25
拼音教學(xué)設(shè)計(jì)04-05