高二數(shù)學(xué)簡單的線性規(guī)劃教學(xué)設(shè)計
教學(xué)目標(biāo)
(1)使了解并會用二元一次不等式表示平面區(qū)域以及用二元一次不等式組表示平面區(qū)域;
(2)了解線性規(guī)化的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;
(3)了解線性規(guī)化問題的圖解法,并能應(yīng)用它解決一些簡單的實際問題;
(4)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的,滲透集合、化歸、數(shù)形結(jié)合的思想,提高學(xué)生“建!焙徒鉀Q實際問題的;
(5)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生數(shù)學(xué)的和“用數(shù)學(xué)”的意識,激勵學(xué)生勇于創(chuàng)新.
教學(xué)建議
一、結(jié)構(gòu)
教科書首先通過一個具體問題,介紹了二元一次不等式表示平面區(qū)域.再通過一個具體實例,介紹了線性規(guī)化問題及有關(guān)的幾個基本概念及一種基本解法-圖解法,并利用幾道例題說明線性規(guī)化在實際中的應(yīng)用.
二、重點、難點分析
本小節(jié)的重點是二元一次不等式(組)表示平面的區(qū)域.
對學(xué)生來說,二元一次不等式(組)表示平面的區(qū)域是一個比較陌生、抽象的概念,按學(xué)生現(xiàn)有的知識和認(rèn)知水平難以透徹理解,因此學(xué)習(xí)二元一次不等式(組)表示平面的區(qū)域分為兩個大的層次:
(1)二元一次不等式表示平面區(qū)域.首先通過建立新舊知識的聯(lián)系,自然地給出概念.明確二元一次不等式 在平面直角坐標(biāo)系中表示直線 某一側(cè)所有點組成的平面區(qū)域不包含邊界直線(畫成虛線).其次再擴大到 所表示的平面區(qū)域是包含邊界直線且要把邊界直線畫成實線.
(2)二元一次不等式組表示平面區(qū)域.在理解二元一次不等式表示平面區(qū)域含義的基礎(chǔ)上,畫不等式組所表示的平面區(qū)域,找出各個不等式所表示的平面區(qū)域的公共部分.這是學(xué)生對代數(shù)問題等價轉(zhuǎn)化為幾何問題以及數(shù)學(xué)建模解決實際問題的基礎(chǔ).
難點是把實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答.
對許多學(xué)生來說,從抽象到的化歸并不比從具體到抽象遇到的問題少,學(xué)生解數(shù)學(xué)應(yīng)用題的最常見困難是不會將實際問題提煉成數(shù)學(xué)問題,即不會建模.所以把實際問題轉(zhuǎn)化為線性規(guī)劃問題作為本節(jié)的難點,并緊緊圍繞如何引導(dǎo)學(xué)生根據(jù)實際問題中的已知條件,找出約束條件和目標(biāo)函數(shù),然后利用圖解法求出最優(yōu)解作為突破這個難點的關(guān)鍵.
對學(xué)生而言解決應(yīng)用問題的障礙主要有三類:①不能正確理解題意,弄清各元素之間的關(guān)系;②不能分清問題的主次關(guān)系,因而抓不住問題的本質(zhì),無法建立數(shù)學(xué)模型;③孤立地考慮單個的問題情景,不能多方聯(lián)想,形成正遷移.針對這些障礙以及題目本身文字過長等因素,將本課設(shè)計為計算機輔助教學(xué),從而將實際問題鮮活直觀地展現(xiàn)在學(xué)生面前,以利于理解;分析完題后,能夠抓住問題的本質(zhì)特征,從而將實際問題抽象概括為線性規(guī)劃問題.另外,利用計算機可以較快地幫助學(xué)生掌握尋找整點最優(yōu)解的方法.
三、教法建議
(1)對學(xué)生來說,二元一次不等式(組)表示平面的區(qū)域是一個比較陌生的概念,不象二元一次方程表示直線那樣已早有所知,為使學(xué)生對這一概念的引進不感到突然,應(yīng)建立新舊知識的聯(lián)系,以便自然地給出概念
(2)建議將本節(jié)新課講授分為五步(思考、嘗試、猜想、證明、歸納)來進行,目的是為了分散難點,層層遞進,突出重點,只要學(xué)生對舊知識掌握較好,完全有可能由學(xué)生主動去探求新知,得出結(jié)論.
(3)要舉幾個典型例題,特別是似是而非的例子,對理解二元一次不等式(組)表示的平面區(qū)域的含義是十分必要的.
(4)建議通過本節(jié)教學(xué)著重培養(yǎng)學(xué)生掌握“數(shù)形結(jié)合”的數(shù)學(xué)思想,盡管側(cè)重于用“數(shù)”研究“形”,但同時也用“形”去研究“數(shù)”,這對培養(yǎng)學(xué)生觀察、聯(lián)想、猜測、歸納等數(shù)學(xué)能力是大有益處的.
(5)對作業(yè)、思考題、研究性題的建議:①作業(yè)主要訓(xùn)練學(xué)生規(guī)范的解題步驟和作圖能力;②思考題主要供學(xué)有余力的.學(xué)生課后完成;③研究性題綜合性較大,主要用于拓寬學(xué)生的.
(6)若實際問題要求的最優(yōu)解是整數(shù)解,而我們利用圖解法得到的解為非整數(shù)解(近似解),應(yīng)作適當(dāng)?shù)恼{(diào)整,其方法應(yīng)以與線性目標(biāo)函數(shù)的直線的距離為依據(jù),在直線的附近尋求與此直線距離最近的整點,不要在用圖解法所得到的近似解附近尋找.
如果可行域中的整點數(shù)目很少,采用逐個試驗法也可.
(7)在線性規(guī)劃的實際問題中,主要掌握兩種類型:一是給定一定數(shù)量的人力、物力資源,問怎樣運用這些資源能使完成的任務(wù)量最大,收到的效益最大;二是給定一項任務(wù)問怎樣統(tǒng)籌安排,能使完成的這項任務(wù)耗費的人力、物力資源最小.
【 高二數(shù)學(xué)簡單的線性規(guī)劃教學(xué)設(shè)計】相關(guān)文章:
數(shù)學(xué)教學(xué)設(shè)計12-27
初中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計04-21
小學(xué)數(shù)學(xué)教學(xué)設(shè)計:《找規(guī)律》04-06
數(shù)學(xué)課堂教學(xué)設(shè)計08-24
小學(xué)三年級數(shù)學(xué)《分?jǐn)?shù)的簡單計算》優(yōu)秀教學(xué)設(shè)計02-07
乘法分配律數(shù)學(xué)教學(xué)設(shè)計03-24
小數(shù)乘小數(shù)小學(xué)數(shù)學(xué)教學(xué)設(shè)計03-20
數(shù)學(xué)優(yōu)秀的教學(xué)設(shè)計模板(通用11篇)04-21