- 相關推薦
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計(精選10篇)
作為一位杰出的老師,時常需要編寫教學設計,教學設計是對學業(yè)業(yè)績問題的解決措施進行策劃的過程。教學設計應該怎么寫呢?下面是小編幫大家整理的小學數(shù)學《圓錐的體積》優(yōu)秀教學設計,歡迎大家分享。
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計 篇1
教學內容:
冀教版小學數(shù)學六年級下冊第40~42頁。
教學目標:
1、知識與技能:知道圓錐的各部分名稱,探索并掌握圓錐的體積公式,會用公式計算圓錐的體積。
2、過程與方法:通過觀察、討論、實驗等活動,經歷認識圓錐和探索圓錐體積計算公式的過程
3、情感態(tài)度與價值觀:積極參加數(shù)學活動,了解圓錐和圓柱之間的聯(lián)系獲得探索數(shù)學公式的活動經驗。
教學重難點:
教學重點:了解圓錐的特點,探索并理解圓錐體積的計算公式會用公式計算圓錐的體積。
教學難點:理解圓錐的高和圓錐體積公式中“Sh”表示的實際意義。
教具學具:
1、等底等高的圓柱和圓錐型容器,一些沙子。
2、多媒體。
教學流程:
一、炫我兩分鐘
主持學生指名叫學生回答下列問題:
1.圓柱有幾個面?各有什么特點?
2.怎樣計算圓柱的體積?
學生回答問題。
【設計意圖:通過學生主持炫我兩分鐘,使學生復習以前學過的相關知識,在輕松愉快的氛圍中自然引入本節(jié)所學知識!
二、創(chuàng)設情境
1、教師先出示一個圓柱形容器,提問:如果想知道這個容器的容積,怎么辦?
2、出示問題情境:
最近老師家準備裝修,準備了一堆沙子,可是老師遇到了一個難題,大家和我一起解決好嗎?(出示沙堆圖片),這堆沙子的底面半徑是2米,高是1.5米,工人告訴我要用6立方米沙子,我不知道我準備的這些沙子夠不夠?怎樣計算這堆沙子的體積呢?今天我們就一起來研究一下圓錐體積的計算方法。(板書課題)
【設計意圖:在談話、創(chuàng)設問題情境的過程中,引起學生的認知沖突,從而產生求知欲望。】
三、探究新知
嘗試小研究一(課前):了解圓錐的特點
1.觀察圓錐形的物體或圖片,它們有哪些特點?
我的發(fā)現(xiàn):
2.圓錐由1個( )面和1個( )面2個面組成,圓錐的底面是一個( ) ,圓錐的側面是一個( ) 。
3.從圓錐頂點到底面圓心的距離是圓錐的( ),用字母( )表示。
4.怎樣計算圓錐的體積?
我的猜想:( )
嘗試小研究二(課上):推導圓錐體積的計算公式
1、引導學生借助圓柱,探討圓錐的體積公式。
、佟⒉拢簣A錐的體積怎樣計算呢?大膽猜一下。真的是這樣嗎?
、、是怎樣推導的呢?你有什么想法?
下面我們就用實驗的方法來推導圓椎的體積公式。
老師提供了實驗用具,拿出來看看:(有圓柱,有圓椎,有沙子,有水)都有嗎?
2、用實驗的方法,推導圓錐的體積公式。
、、引導學生觀察用來實驗的圓錐、圓柱的特點。
其實老師已經準備好了材料,在你們的小組長手中,看一看,比一比,有什么特點嗎?(學生發(fā)現(xiàn)等底等高)(師板書等底等高)
②、學生實驗:
你想怎么實驗?(小組可以議一議)(老師指導:倒一下)
請大家以小組為單位進行實驗,在實驗中,注意作好記錄,思考三個問題:(大屏幕出示這三個問題)(學生讀一讀思考題)
A:你們小組是怎樣進行實驗的?
B:通過實驗,你們發(fā)現(xiàn)了所給的圓錐、圓柱在體積上有什么關系?
C:根據這個關系怎樣求出圓錐的體積?
。ń處熤笇В簽榱俗寣嶒灨鼫蚀_些,可以用尺子將沙子刮平再倒入)
③、學生交流匯報,完成計算公式的推導:
小組匯報,師板書。
圓錐的體積等于和它等底等高的圓柱體積的三分之一。
V=1/3Sh
【設計意圖:通過小組合作,觀察、討論、實驗等活動,經歷認識圓錐和探索圓錐體積計算公式的過程,知道圓錐的各部分名稱,探索并掌握圓錐的體積公式,會用公式計算圓錐的`體積。】
四、解決問題,鞏固練習
(一)運用這個公式解決老師提出的問題,幫助老師解決問題。
1、 學生試做。
2、對子同學交流。
3、小組交流。
4、展示匯報。
。ǘ┡袛啵 用手勢來回答
1、圓柱的體積是圓錐體積的3倍。( )
2、一個圓柱,底面積是12平方分米,高是5分米,它的體積是20立方分米( )
3、把一個圓柱木塊削成一個最大的圓錐,削去的體積是圓柱體積的三分之二。( )
。ㄈ┩瓿山滩牡42頁“試一試”。
【設計意圖:通過練習,加深對本節(jié)課知識的了解,使學生更好的掌握本節(jié)課所學知識,并提高學生應用所學知識解決實際問題的能力!
五、盤點收獲
通過這節(jié)課的學習,你有什么收獲?你還想了解哪些知識
【設計意圖:引導學生進行小結,培養(yǎng)學生的探究欲望,有利于知識的積累和自主學習能力的提高!
六、拓展延伸
教材第42頁“練一練”第4題。
【設計意圖: 把課上的知識延伸到課外,使學生進一步感受數(shù)學于生活并應用于生活!
板書設計: 圓錐和圓錐的體積
圓錐的體積等于和它等底等高的圓柱體積的三分之一。
圓錐的體積=底面積×高×1/3
V=1/3Sh
5 O
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計 篇2
一.教材依據
本節(jié)課所講的《圓錐的體積》是九年義務教育人教實驗版,第十二冊第二章第二節(jié)的內容。
二.設計思想
為了落實素質教育,積極推進新改革,充分發(fā)揮學生的主體作用,甘做學生的朋友,引導其積極主動地進行探究性學習。通過“小組活動”、“合作探究”全面調動每一位學生的學習積極性和參與性。通過學生的自主學習、互助學習,自主探究所學的內容,完全改變過去被動的“填鴨式”的教學模式,切實提高課堂效率。
本節(jié)教材我想通過向等底等高的圓柱和圓錐中倒水或沙的實驗,得到圓錐體積的計算公式V=1/3sh.即就是等底等高的圓錐體積是圓柱體積的三分之一。例2是已知圓錐形沙堆的.底面直徑和高,求沙子的體積。這是一個簡單的實際問題,通過這個例子教學使學生初步學會解決一些與計算圓錐形物體的體積有關的實際問題。前面學生對圓錐、圓柱立體圖形的特征已進行了學習,對其特征也有了較深刻的認識,可以熟練地計算圓柱的體積、表面積、側面積。這是學習本節(jié)課的基礎。
三.教學目標
知 識 技能:理解并掌握圓錐體積的計算方法,能運用公式解決
簡單的實際問題。
過程與方法:在實踐操作中掌握圓錐體積公式的推導。
情 感 態(tài)度:培養(yǎng)學生樂于學習,熱愛生活,勇于探索的精神。
四.教學重點
進一步理解圓錐的體積公式,能運用公式進行計算,能解決
簡單的實際問題。
五.教學難點:
圓錐體積公式的推導。
六、教法選擇
利用多媒體、觀察法、實驗法、師生互動啟發(fā)式教學
七、學法指導
觀察實驗 —合作探究—達標反饋— 歸納總結
八.教學準備
多媒體課件、同樣的圓柱形容器若干、與圓柱等底等高的圓錐形容器若干、水和沙土。
九.教學過程
【復習舊知】
1. 課件展示圓柱和圓錐的立體圖形,并請學生說出圖形各部分的名稱。
2. 圓柱的體積公式是什么?
【創(chuàng)設情境,引發(fā)猜想】
1.多媒體課件呈現(xiàn)出動畫情景故事(配音樂):
盛夏的一天,森林里悶熱極了,小動物們熱得喘不過氣來,都想吃點解暑的東西。漂亮的小白兔去冷飲店買了一塊圓柱形的冰麒麟,聰明的狐貍拿著一塊圓錐形的冰麒麟想和它交換…… (多媒體課件展示兩塊冰麒麟等底等高)
2.引導學生圍繞問題展開討論。
問題一:小白兔上當了嗎?
問題二:狐貍和小白兔怎樣交換才算公平?
3. 導入新課,板書課題:同學們,要解決這些問題我們就來學習《圓錐的體積》這一節(jié)課,然后幫幫小白兔好嗎?
【自主探索,動手實驗】
出示思考題:通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐的體積之間有什么關系?你們小組是怎樣實驗的?
1. 小組實驗。按照實驗程序要求和注意事項(多媒體課件展示)
每四人為一小組,各小組長帶領三個成員動手操作實驗,教師在教室巡回指導。
2. 全班交流。
組織收集信息 —— 引導整理信息 —— 參與處理信息
3. 引導反思。實驗過程讓學生積極發(fā)散思維,各抒己見。
4. 公式推導。
全班同學集體觀看多媒體課件的實驗過程,并結合自己的實驗活動試著推導圓錐的體積計算公式。
圓柱的體積等于和它等底等高的圓錐體積的3倍;或者圓錐的體積等于和它等底等高的圓柱體積1/3。
用字母表示為: V=1/3sh
5.思考:如果要計算圓錐的體積,必須知道那些條件?
6.問題解決。
故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(課件出示:等底等高)
【運用公式,解決問題】
例2:建筑工地上有許多沙子,堆起來近似一個圓錐,這堆沙子大約
有多少立方米?(結果保留兩位小數(shù))
具體解題過程讓同學們自己大顯身手,個別學生可以上講臺板演,然后教師作最后講評。
【練習鞏固】課件出示,師生共同完成。
一.判斷。
1、圓柱體的體積一定比圓錐體的體積大。 ( )
2、圓錐的體積等于和它等底等高的圓柱體的。 ( ) 3、正方體、長方體、圓錐體的體積都等于底面積×高。( ) 。
4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。( )
二.填表。
已 知 條 件 體積
圓錐底面半徑2厘米,高9厘米
圓錐底面直徑6厘米,高3厘米
圓錐底面周長6.28分米,高6分米
【拓展延伸】:
有一根底面直徑是6厘米,長是15厘米的圓柱形鋼材,要把它削成與它等底等高的圓錐形零件。要削去鋼材多少立方厘米?
【質疑問難,總結升華】
通過這節(jié)課的學習,你們對圓錐的體積有哪些新的認識?請談談自己的感想和收獲。
【作業(yè)布置】
課本25頁第3、5、8題
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計 篇3
教學目標:
1、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱圓錐體積之間的關系,從而得出圓錐體積的計算公式。
2、能運用公式解答有關的實際問題。
3、滲透轉化、實驗、猜測、驗證等數(shù)學思想方法,培養(yǎng)動手能力和探索意識。
教學過程
一、創(chuàng)設情境,引發(fā)猜想
1. 電腦呈現(xiàn)出動畫情境(伴圖配音)。
夏天,森林里悶熱極了,小動物們都熱得喘不過氣來。一只小白兔去動物超市購物,在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)
2. 引導學生圍繞問題展開討論。
問題一:狐貍貪婪地問:小白兔,用我手中的雪糕跟你換一個,怎么樣?(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當?)
問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)
問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法與小組同學交流一下,再向全班同學匯報)
過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了圓錐的體積后,就會弄明白這個問題。
二、自主探索,操作實驗
下面,請同學們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積間的關系,解決電腦博士給我們提出的問題。
出示思考題:
。1)通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關系?
。2)你們的小組是怎樣進行實驗的?
1. 小組實驗。
。1)學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、水、水槽、量杯、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子等,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關系的,也有5倍關系的。
。2)同組的學生做完實驗后,進行交流,并把實驗結果寫在長條黑板上。
2. 大組交流。
。1)組織收集信息。
學生匯報時可能會出現(xiàn)下面幾種情況,教師把這些信息逐一呈現(xiàn)在插式黑板上:
、 圓柱的體積正好是圓錐體積的'3倍。
、 圓柱的體積不是圓錐體積的3倍。
、 圓柱的體積正好是圓錐體積的8倍。
、 圓柱的體積正好是圓錐體積的5倍。
⑤ 圓柱的體積是等底等高的圓錐體積的3倍。
⑥ 圓錐的體積是等底等高的圓柱體積的1/3 。
。2)引導整理信息。
指導學生仔細觀察,把黑板上的信息分類整理。(根據學生反饋的實際情況靈活進行)
。3)參與處理信息。
圍繞3倍關系的情況討論:
、 請這幾個小組同學說出他們是怎樣通過實驗得出這一結論的?
、 哪個小組得出的結論更加科學合理一些?
圓錐的體積是等底等高的圓柱體積的1/3。
(突出等底等高,并請他們拿出實驗用的器材,自己比劃、驗證這個結論。)
③引導學生自主修正另外兩個結論。
3. 誘導反思。
。1)為什么有兩個小組實驗的結果不是3倍關系呢?
(2)把一個空心的圓錐慢慢按入等底等高且裝滿水的圓柱形容器里,剩下水的體積是多少?這時和圓柱體積有什么關系?
4. 推導公式。
嘗試運用信息推導圓錐的體積計算公式。
。1)這里Sh表示什么?為什么要乘1/3?
。2)要求圓錐體積需要知道哪兩個條件?
5. 問題解決。
童話故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(動畫演示:等底等高)之后播放狐貍拿著圓錐形雪糕離去的畫面。
三、運用公式,解決問題
1. 教學例1。一個圓錐形的零件,底面積是19平萬厘米,高是12厘米。這個零件的體積是多少?
2. 學生嘗試行算,指名板演,集體訂正。
3. 引導小結:不要漏乘1/3;計算時,能約分時要先約分。
四、鞏固練習,拓展深化(略)
五、質疑問難,總結升華
通過這節(jié)課的學習,你們探索到了什么?怎樣推導出圓錐體積公式的?
回到童話情節(jié)。我們發(fā)現(xiàn)三個圓錐形的雪糕換一個與它等底等高的圓柱形雪糕公平合理,如果狐貍只用一個圓錐形的雪糕和小白兔交換,而不使小白兔吃虧,那么圓錐形的雪糕應該是什么樣的?配合用課件演示。
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計 篇4
教學目標:
1、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱體和圓錐體之間的關系,從而得出圓錐體的體積公式。
2、能運用公式解答有關的實際問題。
3、滲透轉化、實驗、猜測、驗證等數(shù)學思想方法,培養(yǎng)動手能力和探索意識。
教學重點:
通過實驗的方法,得到計算圓錐體積的公式。
教學難點:
運用圓錐體積公式正確地計算體積。
教學過程:
一、創(chuàng)設情境,引發(fā)猜想
在一個悶熱的中午,小白兔買了一個圓柱形的`雪糕,狐貍買了一個圓錐形的雪糕,這兩個雪糕是等底等高的。這是狐貍要用它的雪糕和小白兔換。你覺得小白兔有沒有上當?如果狐貍用兩個雪糕和小白兔換你覺得公平嗎?假如你是小白兔,狐貍有幾個雪糕你才肯和它換呢?把你的想法與小組的同學交流一下,再向全班同學匯報。
小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了圓錐的體積后,就會弄明白這個問題。
二、自主探索,操作實驗
1、出示學習提綱
。1) 利用手中的學具,動手操作,通過試驗,你發(fā)現(xiàn)圓柱的體積與圓錐體積之間有什么關系?
。2) 你們小組是怎樣進行實驗的?
(3) 你能根據實驗結果說出圓錐體的體積公式嗎?
。4) 要求圓錐體積需要知道哪兩個條件?
2、小組合作學習
3、回報交流
結論:圓錐的體積是等底等高的圓柱體積的1/3。
公式:V=1/3Sh
4、問題解決
小白兔和狐貍怎樣交換才能公平合理呢?它需要什么前提條件?
5、運用公式解決問題
教學例題1和例題2
三、鞏固練習
1、圓錐的底面積是5,高是3,體積是()
2、圓錐的底面積是10,高是9,體積是()
3、求下面各圓錐的體積.
。1)底面面積是7.8平方米,高是1.8米.
(2)底面半徑是4厘米,高是21厘米.
。3)底面直徑是6分米,高是6分米.
4、判斷對錯,并說明理由.
(1)圓柱的體積相當于圓錐體積的3倍.( )
。2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2 :1.( )
(3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.( )
四、拓展延伸
一個圓錐的底面周長是31?4厘米,高是9厘米,它的體積是多少立方厘米?
五、談談收獲
六、作業(yè)
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計 篇5
教學目標
1.理解求圓錐體積的計算公式。
2.會運用公式計算圓錐的體積。
3.培養(yǎng)同學們初步的空間觀念和思維能力;讓同學們認識轉化的思考方法。
教學重點
圓錐體體積計算公式的推導過程。
教學難點
正確理解圓錐體積計算公式。
教學過程
一、鋪墊孕伏
1.提問:
。1)圓柱的體積公式是什么?
(2)投影出示圓錐體的.圖形,學生指圖說出圓錐的底面、側面和高。
2.導入:同學們,前面我們已經認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題。(板書:圓錐的體積)
二、探究新知
。ㄒ唬┲笇骄繄A錐體積的計算公式
1.教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法。老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土。實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里。倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發(fā)現(xiàn)了什么?
2.學生分組實驗。
3.學生匯報實驗結果:
、賵A柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿。
、趫A柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿。
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿。
4.引導學生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的 。
板書:
5.推導圓錐的體積公式:用字母表示圓錐的體積公式.板書: 。
6.思考:要求圓錐的體積,必須知道哪兩個條件?
7.反饋練習
圓錐的底面積是5,高是3,體積是( )。
圓錐的底面積是10,高是9,體積是( )。
。ǘ┧阋凰
學生獨立計算,集體訂正。
說說解題方法。
三、全課小結
通過本節(jié)的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計 篇6
教學內容:
教科書第20~21頁例5及相應的 試一試,練一練和練習四的第1~3題。
教學目標:
1.組織學生參與實驗,從而推導出圓錐體積的計算公式。
2.會運用圓錐的體積計算公式計算圓錐的體積。
3.培養(yǎng)學生觀察、比較、分析、綜合的能力以及初步的空間觀念。
4.以小組形式參與學習過程,培養(yǎng)學生的合作意識。
5.滲透轉化的數(shù)學思想。
教學重點:
理解和掌握圓錐體積的計算公式。
教學難點:
理解圓柱和圓錐等底等高時體積間的倍數(shù)關系。
教學資源:
等底等高的圓柱和圓錐容器一套,一些沙或米等。
教學過程:
一、聯(lián)系舊知,設疑激趣,導入新課。
1.我們已經知道了哪些立體圖形體積的求法?(學生回答時老師出示相應的教具---長方體,正方體圓柱體,然后板書相應的'計算公式。)
2.我們是用什么方法推出圓柱體積的計算公式的?(是把圓柱體轉化為長方體來推導的。板書:轉化)
3.(出示教具)大家覺得這個圓錐與哪個立體圖形的關系最近呢?(老師比較學生指出的圓柱與圓錐的底和高,引導學生發(fā)現(xiàn)這個圓柱與圓錐等底等高。)
4.大家覺得我們今天要研究的圓錐的體積可能轉化為什么圖形來研究比較簡單呢?能說說自己的理由嗎?
5.它們的體積之間到底有什么關系呢?
二、實驗操作、推導圓錐體積計算公式。
1.課件出示例5。
(1)通過演示使學生知道什么叫等底等高。
(2)讓學生猜想:圖中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?
。3)實驗操作,發(fā)現(xiàn)規(guī)律。
。ㄓ脤W具演示)在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的 。
老師把圓柱里的黃沙倒進圓錐,問:把圓柱內的沙往圓錐內倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?
。4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的 。
2.教師課件演示
3.學生討論實驗情況,匯報實驗結果。
4.啟發(fā)引導推導出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積 1/3=底面積高1/3
用字母表示:V= 1/3Sh
小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以1/3 ?
5.教學試一試
。1)出示題目
。2)審題后可讓學生根據圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
三、發(fā)散練習、鞏固推展
1.做練一練第1.2題。
指名一人板演,其余學生做在練習本上。集體訂正,強調要乘以1/3 。
。.做練習四第1.2題。
學生做在課本上。之后學生反饋。錯的要求說明理由。
四、小結
這節(jié)課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
學生交流
五、作業(yè)
練習四第3題。
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計 篇7
【教材分析】
本節(jié)課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發(fā)展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。本節(jié)內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,直觀引導學生經歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養(yǎng)學生抽象的邏輯思維能力,激發(fā)學生的想象力.
【設計理念】
數(shù)學課程標準中指出:應放手讓學生經歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發(fā)展空間觀念,從而提高學生自主解決問題的能力。
【教學目標】
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態(tài)度與價值觀:培養(yǎng)學生勇于探索的求知精神,感受到數(shù)學來源于生活,能積極參與數(shù)學活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習慣。
【教學重點】
圓錐體積公式的理解,并能運用公式求圓錐的體積。
【教學難點】
圓錐體積公式的推導
【學情分析】
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發(fā)現(xiàn)問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對于新的知識教學,他們一定能表現(xiàn)出極大的熱情。
【教法學法】
試驗探究法小組合作學習法
【教具學具準備】
多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
【教學課時】
2課時
【教學流程】
第一課時
一、回顧舊知識
1、你能計算哪些規(guī)則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
【設計意圖】通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
二、創(chuàng)設情景激發(fā)激情
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
【設計意圖】以生活中的數(shù)學的形式進行設置情景,引疑激趣遷移,激發(fā)學生好奇心和求知欲。(揭示課題:圓錐的體積)
三、試驗探究合作學習(探討圓柱與圓錐體積之間的關系)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數(shù)學專用名詞:等底等高
【設計意圖】通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數(shù)據(教師巡視指導每組的試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
教學預設:
(1)圓椎的體積是圓柱體積的3倍;
(2)圓錐的體積是圓柱體積的三分之一;
(3)當?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
【設計意圖】通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發(fā)了學生的求知欲,培養(yǎng)了學生的.動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關系?
2、觀察老師的試驗,你發(fā)現(xiàn)了不等底等高的圓柱與圓錐的體積之間還有三分之一的關系嗎?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
【設計意圖】通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
四、實踐運用提升技能
1、判斷題:【題目內容見多媒體展示】獨立思考---抽生匯報---說明理由---師生評議
2、口答題:【題目內容見多媒體展示】獨立思考---抽生匯報---學生評議
3、拓展運用:【課本例題3】學生分析題意---小組合作解答---學生解答展示---師生評議
【設計意圖】通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。
五、談談收獲:
這節(jié)課你學到了什么呢?
六、課堂作業(yè):
1、做在書上作業(yè):練習四第4、7題
2、坐在作業(yè)本上作業(yè):練習四第3題
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計 篇8
設計說明
《數(shù)學課程標準》指出:“學生學習應當是一個生動活潑的、主動且富有個性的過程。除接受學習外,動手實踐、自主探索與合作交流同樣是學習數(shù)學的重要方式!备鶕昙墝W生基本都有較強的實驗操作能力和空間想象能力這一特點,在教學圓錐體積計算公式的推導時,一改以前教師演示或在教師指令下做試驗的方式,采取給學生提供材料和機會,引導學生自主探究的學習方式進行教學。具體表現(xiàn)在以下幾個方面:
1.注意激發(fā)學生的求知欲。
上課伊始,通過精心設計的問題引發(fā)學生深入思考,激發(fā)學生的學習興趣。在推導公式的過程中,通過引導學生探討試驗方法,使學生的學習興趣保持高漲。在解決問題時,通過“扶”而不是“包辦代替”,使學生在自主分析問題、解決問題中,真實感受到成功的喜悅。
2.注意以學生為學習活動的主體。
教學中,為學生提供動腦、動手的空間,使學生充分參與獲取知識的全過程,在分組觀察、實驗操作、測量等基礎上,自主推導出圓錐的體積計算公式。
3.在學習過程中教給學生科學的探究方法。
“提出問題——直覺猜想——試驗探究——合作交流——試驗驗證——得出結論——實踐運用”是探究學習的一個基本方法,教學中,為學生搭建探究學習的平臺,促使學生在這樣的過程中掌握知識,獲得廣泛的數(shù)學活動經驗和思想方法,發(fā)展學生的反思意識和自我評價意識。同時,課堂中,啟發(fā)學生提問、猜想、動手實踐,培養(yǎng)學生解決問題的能力。
課前準備
教師準備 PPT課件 鉛錘
學生準備 等底、等高的圓柱形容器和圓錐形容器 沙子或水
教學過程
⊙問題導入
1.提問激趣。
師:怎樣計算這個鉛錘的體積?(出示鉛錘)
預設
生:可以用“排水法”。把鉛錘放入盛水的量杯中(水未溢出),根據水面的先后變化求出鉛錘的體積。
師:怎樣求出沙堆的體積?(課件出示例3沙堆圖)
預設
生1:用“排水法”好像不行。
生2:把圓錐形沙堆改變形狀,堆成正方體,測出它的棱長后計算它的體積。
生3:把圓錐形沙堆改變形狀,堆成長方體,測出它的長、寬、高后計算它的'體積。
生4:把圓錐形沙堆改變形狀,堆成圓柱,測出它的底面周長和高,求出它的底面積后計算它的體積。
2.導入新知。
師:大家都想到了用“轉化”的方法求這堆沙子的體積,但如果我們在計算沙堆體積之前,必須把沙子重新堆放成以前學過的幾何形體,這樣做又麻煩又不容易成功,看來我們還需要尋求一種更普遍、更科學、更便利的求圓錐的體積的方法。(板書課題:圓錐的體積)
設計意圖:通過提出問題,引發(fā)學生的認知沖突,激發(fā)學生的求知欲,培養(yǎng)學生自主探究的意識,感受學習數(shù)學的必要性。
⊙探究新知
1.猜一猜:圓錐的體積可能與哪種立體圖形的體積有關?
(學生大膽猜想,可能與圓柱的體積有關)
2.探究圓錐的體積要借助一個什么樣的圓柱來研究這一問題呢?
學生經過討論、交流并說出觀點:應該選擇一個與這個圓錐等底、等高的圓柱更為合適。
3.課件出示等底、等高的圓柱和圓錐。
引導學生想一想它們的體積之間會有什么樣的關系。
4.方法指導。
議一議:怎樣借助等底、等高的圓柱和圓錐來探究圓柱和圓錐的體積之間的關系呢?
(各組同學準備好等底、等高的圓柱、圓錐形容器)
預設
生1:把圓柱形容器裝滿水,再倒入圓錐形容器中,看可以正好裝滿幾個圓錐形容器。
生2:把圓錐形容器裝滿沙子,再倒入圓柱形容器中,看正好幾次可以倒?jié)M。
生3:選用一組等底、等高的圓柱模型和圓錐模型,先用“排水法”分別求出圓柱和圓錐的體積,再算出圓柱體積是圓錐體積的幾倍,并發(fā)現(xiàn)兩者之間的關系。
5.操作交流。
(1)分組試驗。
請同學們分組試驗。(學生試驗,教師巡視指導)
(2)交流、匯報。
師:誰能匯報一下自己小組的試驗結果?
預設
生:在圓柱和圓錐的底面積相等、高相等的情況下,將圓錐形容器裝滿沙子向圓柱形容器里倒,倒了3次,正好倒?jié)M。
師:通過試驗,你發(fā)現(xiàn)等底、等高的圓柱和圓錐的體積之間有什么關系?
預設
生1:圓錐的體積是與它等底、等高的圓柱的體積的。
生2:圓柱的體積是與它等底、等高的圓錐的體積的3倍。
6.推導公式。
師:結合自己的試驗結果,說一說計算圓錐的體積時需要知道什么條件。
預設
生1:需要知道與圓錐等底、等高的圓柱的體積是多少。
生2:知道圓錐的底面積和高也可以求出圓錐的體積。
師:你認為圓錐的體積計算公式是什么?
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計 篇9
【教學目標】
1、使學生理解求圓錐體積的計算公式.
2、會運用公式計算圓錐的體積.
【教學重點】
圓錐體體積計算公式的推導過程.
【教學難點】
正確理解圓錐體積計算公式.
【教學步驟】
一、鋪墊孕伏
1、提問:
。1)圓柱的體積公式是什么?
。2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側面和高.
2、導入:同學們,前面我們已經認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知
。ㄒ唬┲笇骄繄A錐體積的計算公式.
1、教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法.老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土.實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的`時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發(fā)現(xiàn)了什么?
2、學生分組實驗
3、學生匯報實驗結果(課件演示:圓錐體的體積1、2、3、4、5)
、賵A柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿.
②圓柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿.
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.
4、引導學生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的1/3.
5、推導圓錐的體積公式:
圓錐的體積是和它等底等高圓柱體積的1/3
V=1/3Sh
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習
圓錐的底面積是5,高是3,體積是()
圓錐的底面積是10,高是9,體積是()
。ǘ┙虒W例1
1、例1一個圓錐形的零件,底面積是19平方厘米,高是12厘米.這個零件的體積是多少?
學生獨立計算,集體訂正.
2、反饋練習:一個圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)
。1)已知圓錐的底面半徑和高,求體積.
。2)已知圓錐的底面直徑和高,求體積.
。3)已知圓錐的底面周長和高,求體積.
4、反饋練習:一個圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
三、全課小結
通過本節(jié)的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)
四、隨堂練習
1、求下面各圓錐的體積.
。1)底面面積是7.8平方米,高是1.8米.
(2)底面半徑是4厘米,高是21厘米.
。3)底面直徑是6分米,高是6分米.
【板書設計】
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的1/3.
小學數(shù)學《圓錐的體積》優(yōu)秀教學設計 篇10
認知目的:
。1)讓學生認識圓錐,掌握它的特征。
。2)理解圓錐的體積計算公式的推導,并能靈活運用公式計算圓錐的體積。
能力目的:
發(fā)展學生的空間觀念,培養(yǎng)學生觀察,動手操作,總結規(guī)律的能力。
情感目的:
創(chuàng)造和諧的師生關系,調動學生的非智力因素,激發(fā)學生的學習興趣。
教學重點:
建立圓錐體的表象,概括圓錐體的特征,并能運用公式計算圓錐體的體積。
教學難點:
理解等底等高的圓錐體和圓柱體的關系,以及圓錐體積公式的推導過程。
教學準備:
1、多媒體計算機軟、硬件一套。
2、學生實驗用圓柱、圓錐容器十套,紅色溶液一桶。
3、幻燈機,圓錐體實物如:小丑帽、重錘等。
教學過程:
一、復習準備:
1、圓柱的體積計算公式是什么?
2、已知一個圓柱的半徑是2厘米,高是5厘米,它的體積是多少?
二、導出新課:
我們已經學習過了長方體和正方體及圓柱體的體積,在實際生活中,經常會遇到另一種物體(出示圓錐體實物如:小丑帽、重錘),這種形體叫圓錐體。你們在生活中見過這樣的物體嗎?(請學生回答)這節(jié)課我們重點研究圓錐的體積。(板書課題:圓錐的體積)
三、新授:
1、學生通過對圓錐實物及電腦圖形的觀察,多角度多種實物中得到對圓
錐感性認識,在建立了感性認識的基礎上,師生共同總結出圓錐的特征是:它只有一個底面;這個底面是一個圓;它有一個頂點。
教師拿出已準備好的圓錐教具,將其一分為二,叫學生觀察圓錐的高,指出從頂點到底面圓心的距離叫圓錐的高。
2、紹各部分的名稱(用電腦出示圓錐圖形)
3、圓錐體積公式的.推導:
通過分組實驗讓學生自己發(fā)現(xiàn)圓柱、圓錐在等底等高時的體積關系。在實驗前教師提出實驗的要求和實驗要解決的問題。
問題:(1)圓錐與圓柱是否等底等高?
(2)倒了幾次才能倒?jié)M空圓柱?
(3)這個實驗說明等底等高的圓柱、圓錐體積有怎樣的關系?
要求:(1)分五人一組,相互合作,共同完成實驗。
。2)教師每組給一個中空、未封底的圓錐,學生自己動手制作一個與它等底等高的圓柱。制作的圓柱也不封底。
(3)將圓錐裝滿溶液,然后倒入圓柱里,裝滿圓柱為止。
實驗結束后,讓學生自己總結得出結論,教師根據學生得出的結論得出Ⅴ錐=
【小學數(shù)學《圓錐的體積》優(yōu)秀教學設計】相關文章:
小學數(shù)學圓錐的體積教學設計11-17
圓錐的體積優(yōu)秀教學設計01-18
《圓錐的體積》教學設計02-09
“圓錐的體積”教學設計02-09
圓錐的體積教學設計11-26
圓錐的體積教學設計03-02
有關圓錐的體積教學設計01-12
圓錐的體積教學設計模板01-12