中考數(shù)學(xué)知識點(diǎn)總結(jié)15篇[精華]
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗(yàn)方法以及結(jié)論的書面材料,它可以幫助我們總結(jié)以往思想,發(fā)揚(yáng)成績,因此,讓我們寫一份總結(jié)吧。你想知道總結(jié)怎么寫嗎?以下是小編為大家收集的中考數(shù)學(xué)知識點(diǎn)總結(jié),希望對大家有所幫助。
中考數(shù)學(xué)知識點(diǎn)總結(jié)1
一、代數(shù)式
1. 概念:用基本的運(yùn)算符號(加、減、乘、除、乘方、開方)把數(shù)與字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。
2. 代數(shù)式的值:用數(shù)代替代數(shù)式里的字母,按照代數(shù)式的運(yùn)算關(guān)系,計(jì)算得出的結(jié)果。
二、整式
單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
1. 單項(xiàng)式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)或字母(可以是兩個(gè)數(shù)字或字母相乘)也是單項(xiàng)式。
2) 單項(xiàng)式的系數(shù):單項(xiàng)式中的 數(shù)字因數(shù)及性質(zhì)符號叫做單項(xiàng)式的系數(shù)。
3) 單項(xiàng)式的次數(shù):一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。
2. 多項(xiàng)式:1)幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),其中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個(gè)多項(xiàng)式有幾項(xiàng)就叫做幾項(xiàng)式。
2)多項(xiàng)式的次數(shù):多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù),就是這個(gè)多項(xiàng)式的次數(shù)。
3. 多項(xiàng)式的排列:
1).把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從大到小的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母降冪排列。
2).把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小到大的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母升冪排列。
由于單項(xiàng)式的項(xiàng),包括它前面的性質(zhì)符號,因此在排列時(shí),仍需把每一項(xiàng)的性質(zhì)符號看作是這一項(xiàng)的一部分,一起移動。
三、整式的運(yùn)算
1. 同類項(xiàng)——所含字母相同,并且相同字母的次數(shù)也相同的項(xiàng)叫做同類項(xiàng),幾個(gè)常數(shù)項(xiàng)也叫同類項(xiàng)。同類項(xiàng)與系數(shù)無關(guān),與字母排列的順序也無關(guān)。
2. 合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)叫做合并同類項(xiàng)。即同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
3. 整式的加減:有括號的先算括號里面的,然后再合并同類項(xiàng)。
4. 冪的運(yùn)算:
5. 整式的乘法:
1) 單項(xiàng)式與單項(xiàng)式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個(gè)單項(xiàng)式里含有的字母連同它的`指數(shù)作為積的因式。
2) 單項(xiàng)式與多項(xiàng)式相乘法則:用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
3) 多項(xiàng)式與多項(xiàng)式相乘法則:先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
6. 整式的除法
1) 單項(xiàng)式除以單項(xiàng)式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。
2) 多項(xiàng)式除以單項(xiàng)式:把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加。
四、因式分解——把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式
1) 提公因式法:(公因式——多項(xiàng)式各項(xiàng)都含有的公共因式)吧公因式提到括號外面,將多項(xiàng)式寫成因式乘積的形式。 取各項(xiàng)系數(shù)的最大公約數(shù)作為因式的系數(shù),取相同字母最低次冪的積。公因式可以是單項(xiàng)式,也可以是多項(xiàng)式。
2) 公式法:A.平方差公式; B.完全平方公式
中考數(shù)學(xué)知識點(diǎn)總結(jié)2
1. 因式分把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解;注意:因式分解與乘法是相反的兩個(gè)轉(zhuǎn)化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.
3.公因式的確定:系數(shù)的最大公約數(shù)?相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項(xiàng):
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時(shí)要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結(jié)果要求分解到每一個(gè)因式都不能分解為止;
(4)因式分解的最后結(jié)果要求每一個(gè)因式的首項(xiàng)符號為正;
(5)因式分解的'最后結(jié)果要求加以整理;
(6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負(fù)號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分?jǐn)?shù)系數(shù);(9)展開部分括號或全部括號;(10)拆項(xiàng)或補(bǔ)項(xiàng).
7.完全平方式:能化為(m+n)2的多項(xiàng)式叫完全平方式;對于二次三項(xiàng)式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.
中考數(shù)學(xué)知識點(diǎn)總結(jié)3
第十一章:全等三角形復(fù)習(xí)
一全等三角形
1、什么是全等三角形?一個(gè)三角形經(jīng)過哪些變化可以得到它的全等形?能夠完全重合的兩個(gè)三角形叫做全等三角形。一個(gè)三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。
2、全等三角形有哪些性質(zhì)?
。1):全等三角形的對應(yīng)邊相等、對應(yīng)角相等。
。2):全等三角形的周長相等、面積相等。
。3):全等三角形的對應(yīng)邊上的對應(yīng)中線、角平分線、高線分別相等。
3、一般三角形全等的條件(包括直角三角形):(1)定義(重合)法;
(2)SSS:三邊對應(yīng)相等的兩個(gè)三角形全等;
(3)SAS:兩邊和它們的夾角對應(yīng)相等兩個(gè)三角形全等;
(4)ASA:兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等;
(5)AAS:兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等。解題常用后面四種方法。直角三角形全等特有的條件:HL(斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等)。
4、證明兩個(gè)三角形全等的基本思路:
。1)已知兩邊:a、找第三邊(SSS);b、找夾角(SAS);c、找是否有直角(HL)。
。2)已知一邊一角:①已知一邊和他的鄰角:a、找這邊的另一個(gè)鄰角(ASA);b、找這個(gè)角的另一個(gè)邊(SAS);c、找這邊的對角(AAS)。
、谝阎獌山牵篴、找兩角的夾邊(ASA);b、找夾邊外的任意邊(AAS)。
二角平分線
1、角平分線的性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等。
2、角平分線的判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上。
用法1:∵ QD⊥OA,QE⊥OB用法2:∵ QD⊥OA,QE⊥OB,QD=QE。
∴點(diǎn)Q在∠AOB的平分線上。 ∴點(diǎn)Q在∠AOB的平分線上
∴ QD=QE
3、總結(jié)提高:學(xué)習(xí)全等三角形應(yīng)注意以下幾個(gè)問題
(1)要正確區(qū)分“對應(yīng)邊”與“對邊”,“對應(yīng)角”與“對角”的不同含義;
。2)表示兩個(gè)三角形全等時(shí),表示對應(yīng)頂點(diǎn)的字母要寫在對應(yīng)的位置上;
(3)要記住“有三個(gè)角對應(yīng)相等”或“有兩邊及其中一邊的對角對應(yīng)相等”的兩個(gè)三角形不一定全等;
。4)時(shí)刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對頂角”。
練習(xí):
練習(xí)1:如圖,D在AB上,E在AC上,AB=AC ,∠B=∠C,試問AD=AE嗎?
2、如圖,OB⊥AB,OC⊥AC,垂足為B,C,OB=OC,AO平分∠BAC嗎?
3、如圖,小明不慎將一塊三角形模具打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來一樣的三角形模具呢?如果可以,帶那塊去合適?為什么?
4、如圖,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,還需要補(bǔ)
充的條件可以是
5、已知AC=DB, ∠1=∠2.求證: ∠A=∠D
6、如圖,已知,AB∥DE,AB=DE,AF=DC。請問圖中有那幾對全等三角形?請任選一對給予證明。
7、如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?
8、已知,△ABC和△ECD都是等邊三角形,且點(diǎn)B,C,D在一條直線上求證:BE=AD
9、求證:有一條直角邊和斜邊上的高對應(yīng)相等的兩個(gè)直角三角形全等。
10、將紙片△ABC沿DE折疊,點(diǎn)A落在點(diǎn)F處,已知∠1+∠2=100°,則∠A=度;
11、如圖6,已知:∠A=90°,AB=BD,ED⊥BC于D.求證:AE=ED
三軸對稱
1、把一個(gè)圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時(shí)我們也說這個(gè)圖形關(guān)于這條直線(成軸)對稱。
2、把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說這兩個(gè)圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的.點(diǎn)是對應(yīng)點(diǎn),叫做對稱點(diǎn)。
3、軸對稱的性質(zhì):①關(guān)于某直線對稱的兩個(gè)圖形是全等形。
、谌绻麅蓚(gè)圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
③軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。
、苋绻麅蓚(gè)圖形的對應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱。
4、線段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
性質(zhì):線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等(純粹性)。
逆定理:與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上。(完備性)
線段垂直平分線的集合定義:線段垂直平分線可以看作是與線段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。
5、用坐標(biāo)表示軸對稱小結(jié):
在平面直角坐標(biāo)系中,關(guān)于x軸對稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).關(guān)于y軸對稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等。
利用軸對稱變換作圖:要在燃?xì)夤艿繪上修建一個(gè)泵站,分別向A、B兩鎮(zhèn)供氣,泵站修在管道什么地方,可使所用的輸氣管道線最短?
6、等腰三角形
1.等腰三角形的性質(zhì)
、.等腰三角形的兩個(gè)底角相等。(等邊對等角)
、.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:
如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等。(等角對等邊)。
7、等邊三角形
。1)等邊三角形的性質(zhì):等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于600 。
。2)等邊三角形的判定:
①三個(gè)角都相等的三角形是等邊三角形。②有一個(gè)角是60度的等腰三角形是等邊三角形。
。3)在直角三角形中,如果一個(gè)銳角等于300,那么它所對的直角邊等于斜邊的一半。
練習(xí)1:在△ABC中,AB=AC時(shí),(1)∵AD⊥BC
∴∠ ____= ∠_____;____=____
(2) ∵AD是中線
∴____⊥____; ∠_____= ∠_____
(3) ∵ AD是角平分線
∵_(dá)___ ⊥____;_____=____
2、如圖1,AD是△ABC的角平分線,BE⊥AD交AD的延長線于E,EF∥AC交AB于F,求證:AF=FB.
3、某等腰三角形的兩條邊長分別為3 cm和6 cm,則它的周長為:
4、等腰三角形的一個(gè)角為30°,則底角為___________.
5、已知:如圖5,AB=AC,BD⊥AC.求證:∠DBC=1/2∠A。
6、如圖6,在△ABC中,AB=AC,在AB上取一點(diǎn)E,在AC延長線上取一點(diǎn)F,使BE=CF,EF交BC于G,EM∥CF.求證:EG=FG.
第十四章整式和因式分解
一、冪的4個(gè)運(yùn)算性質(zhì)
1、同底數(shù)冪的乘法:am · an = am+n
2、同底數(shù)冪的除法:am÷an =am-n;a0=1(a≠0)
3、冪的乘方: (am )n = amn
4、積的乘方: (ab)n = anbn
如:(1)(-1)20xx+π0= (x-3)x+2=1,求x.
。2)若10x=5,10y=4,求102x+3y-1的值.
。3)計(jì)算:0.251000×(-2)20xx
二、乘法公式
1、平方差公式:(a+b)(a-b)=a2-b2
2、完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
3、三數(shù)和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc
計(jì)算:(3x+4)(3x-4)-(2x+3)(3x-2)
(1-x)(1+x)(1+x2)(1-x4)
(x+4y-6z)(x-4y+6z)
(x-2y+3z)2
簡便計(jì)算:(1)98×102
(2)2992
(3) 20062-20xx×20xx
活學(xué)活用:已知a+b=5,ab= -2,求(1)a2+b2(2)a-b
三、因式分解
因式分解方法:一提二套三看
一提:提公因式提負(fù)號
二套:套平方差、完全平方、十字相乘法
三看:看是否分解完全。
如:x5-16x -4a 2+4ab- b 2 m 2(m-2)-4m(2-m) 4a2- 16(a-2) 2
a、多項(xiàng)式x2-4x+4、x2-4的公因式是
b、已知x2-2mx+16是完全平方式則m為
c、已知x2-8x+m是完全平方式,則m=
d、已知x2-8x+m2是完全平方式,則m=
e、如果(2a+2b+1)(2a+2b-1)=63,那么a+b=
f、如果(a2 +b2 )(a2 +b2 -1)=20,那么a2 +b2 =_____
簡便計(jì)算:(-2)20xx+(-2)20xx
20xx+20052-20062
3992+399
中考數(shù)學(xué)知識點(diǎn)總結(jié)4
一、重要概念
1、數(shù)的分類及概念
數(shù)系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標(biāo)準(zhǔn)
2、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。
3、倒數(shù):①定義及表示法
②性質(zhì):≠1/a(a≠±1);中,a≠0;a1時(shí),1/a1;D。積為1。
4、相反數(shù):①定義及表示法
、谛再|(zhì):≠0時(shí),a≠—a;與—a在數(shù)軸上的位置;C。和為0,商為—1。
5、數(shù)軸:①定義(“三要素”)
、谧饔茫篈。直觀地比較實(shí)數(shù)的大;B。明確體現(xiàn)絕對值意義;C。建立點(diǎn)與實(shí)數(shù)的一一對應(yīng)關(guān)系。
6、奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n—1
偶數(shù):2n(n為自然數(shù))
7、絕對值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對值頂?shù)腵幾何意義是實(shí)數(shù)a在數(shù)軸上所對應(yīng)的點(diǎn)到原點(diǎn)的距離。
②│a│≥0,符號“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對值只有一個(gè);④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。
中考數(shù)學(xué)知識點(diǎn)總結(jié)5
中位線概念
(1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(2)梯形中位線定義:連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線。
注意(1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連接一頂點(diǎn)和它的對邊中點(diǎn)的線段,而三角形中位線是連接三角形兩邊中點(diǎn)的線段。
(2)梯形的中位線是連接兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。
(3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的'梯形,這時(shí)三角形的中位線就變成梯形的中位線。
中位線定理
(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.
(2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.
中位線定理推廣
三角形有三條中位線,首尾相接時(shí),每個(gè)小三角形面積都等于原三角形的四分之一,這四個(gè)三角形都互相全等。
中考數(shù)學(xué)知識點(diǎn)總結(jié)6
1、有理數(shù)的加法運(yùn)算:
同號相加一邊倒;異號相加“大”減“小”,符號跟著大的'跑;絕對值相等“零”正好、
2、合并同類項(xiàng):
合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣、
3、去、添括號法則:
去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負(fù)號,去、添括號都變號、
4、一元一次方程:
已知未知要分離,分離方法就是移,加減移項(xiàng)要變號,乘除移了要顛倒、
5、平方差公式:
平方差公式有兩項(xiàng),符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、
1、完全平方公式:
完全平方有三項(xiàng),首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項(xiàng)符號隨中央、
2、因式分解:
一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚、
3、單項(xiàng)式運(yùn)算:
加、減、乘、除、乘(開)方,三級運(yùn)算分得清,系數(shù)進(jìn)行同級(運(yùn))算,指數(shù)運(yùn)算降級(進(jìn))行、
4、一元一次不等式解題的一般步驟:
去分母、去括號,移項(xiàng)時(shí)候要變號,同類項(xiàng)合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號改向別忘了、
5、一元一次不等式組的解集:
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找、
一元二次不等式、一元一次絕對值不等式的解集:
大(魚)于(吃)取兩邊,。~)于(吃)取中間。
中考數(shù)學(xué)知識點(diǎn)總結(jié)7
中考數(shù)學(xué)知識點(diǎn):分式混合運(yùn)算法則
分式四則運(yùn)算,順序乘除加減,乘除同級運(yùn)算,除法符號須變(乘);乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號必須兩處,結(jié)果要求最簡.
分式混合運(yùn)算法則:
分式四則運(yùn)算,順序乘除加減,乘除同級運(yùn)算,除法符號須變(乘);
乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結(jié)果要求最簡.
中考數(shù)學(xué)二次根式的加減法知識點(diǎn)總結(jié)
二次根式的加減法
知識點(diǎn)1:同類二次根式
(Ⅰ)幾個(gè)二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。
(Ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡形式的二次根式化為最簡二次根式以后,再看被開方數(shù)是否相同。(2)幾個(gè)二次根式是否是同類二次根式,只與被開方數(shù)及根指數(shù)有關(guān),而與根號外的因式無關(guān)。
知識點(diǎn)2:合并同類二次根式的方法
合并同類二次根式的理論依據(jù)是逆用乘法對加法的.分配律,合并同類二次根式,只把它們的系數(shù)相加,根指數(shù)和被開方數(shù)都不變,不是同類二次根式的不能合并。
知識點(diǎn)3:二次根式的加減法則
二次根式相加減先把各個(gè)二次根式化成最簡二次根式,再把同類二次根式合并,合并的方法為系數(shù)相加,根式不變。
知識點(diǎn)4:二次根式的混合運(yùn)算方法和順序
運(yùn)算方法是利用加、減、乘、除法則以及與多項(xiàng)式乘法類似法則進(jìn)行混合運(yùn)算。運(yùn)算的順序是先乘方,后乘除,最后加減,有括號的先算括號內(nèi)的。
知識點(diǎn)5:二次根式的加減法則與乘除法則的區(qū)別
乘除法中,系數(shù)相乘,被開方數(shù)相乘,與兩根式是否是同類根式無關(guān),加減法中,系數(shù)相加,被開方數(shù)不變而且兩根式須是同類最簡根式。
中考數(shù)學(xué)知識點(diǎn):直角三角形
★重點(diǎn)★解直角三角形
☆內(nèi)容提要☆
一、三角函數(shù)
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.
2.特殊角的三角函數(shù)值:
0°30°45°60°90°
sinα
cosα
tgα/
ctgα/
3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;…
4.三角函數(shù)值隨角度變化的關(guān)系
5.查三角函數(shù)表
二、解直角三角形
1.定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。
2.依據(jù):①邊的關(guān)系:
、诮堑年P(guān)系:A+B=90°
③邊角關(guān)系:三角函數(shù)的定義。
注意:盡量避免使用中間數(shù)據(jù)和除法。
三、對實(shí)際問題的處理
1.俯、仰角:2.方位角、象限角:3.坡度:
4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。
中考數(shù)學(xué)知識點(diǎn)總結(jié)8
1、方程:含有未知數(shù)的等式叫做方程。
2、方程的解:使方程左右兩邊的值相等的未知數(shù)的值叫方程的解,含有一個(gè)未知數(shù)的方程的解也叫做方程的根。
3、解方程:求方程的解或方判斷方程無解的過程叫做解方程。
4、方程的增根:在方程變形時(shí),產(chǎn)生的不適合原方程的根叫做原方程的增根。
二、一元方程
1、一元一次方程
。1)一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(其中x是未知數(shù),a、b是已知數(shù),a≠0)
。2)一玩一次方程的最簡形式:ax=b(其中x是未知數(shù),a、b是已知數(shù),a≠0)
。3)解一元一次方程的一般步驟:去分母、去括號、移項(xiàng)、合并同類項(xiàng)和系數(shù)化為1。
。4)一元一次方程有唯一的一個(gè)解。
2、一元二次方程
。1)一元二次方程的一般形式:(其中x是未知數(shù),a、b、c是已知數(shù),a≠0)
。2)一元二次方程的解法:直接開平方法、配方法、公式法、因式分解法
。3)一元二次方程解法的選擇順序是:先特殊后一般,如果沒有要求,一般不用配方法。
。4)一元二次方程的根的判別式:
當(dāng)Δ>0時(shí)方程有兩個(gè)不相等的實(shí)數(shù)根;
當(dāng)Δ=0時(shí)方程有兩個(gè)相等的實(shí)數(shù)根;
當(dāng)Δ< 0時(shí)方程沒有實(shí)數(shù)根,無解;
當(dāng)Δ≥0時(shí)方程有兩個(gè)實(shí)數(shù)根
。5)一元二次方程根與系數(shù)的關(guān)系:
若是一元二次方程的兩個(gè)根,那么:,(6)以兩個(gè)數(shù)為根的一元二次方程(二次項(xiàng)系數(shù)為1)是:
三、分式方程
。1)定義:分母中含有未知數(shù)的.方程叫做分式方程。
(2)分式方程的解法:
一般解法:去分母法,方程兩邊都乘以最簡公分母。
特殊方法:換元法。
(3)檢驗(yàn)方法:一般把求得的未知數(shù)的值代入最簡公分母,使最簡公分母不為0的就是原方程的根;使得最簡公分母為0的就是原方程的增根,增根必須舍去,也可以把求得的未知數(shù)的值代入原方程檢驗(yàn)。
四、方程組
1、方程組的解:方程組中各方程的公共解叫做方程組的解。
2、解方程組:求方程組的解或判斷方程組無解的過程叫做解方程組
3、一次方程組:
。1)二元一次方程組:
一般形式:(不全為0)
解法:代入消遠(yuǎn)法和加減消元法
解的個(gè)數(shù):有唯一的解,或無解,當(dāng)兩個(gè)方程相同時(shí)有無數(shù)的解。
。2)三元一次方程組:
解法:代入消元法和加減消元法
4、二元二次方程組:
。1)定義:由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組以及由兩個(gè)二元二次方程組成的方程組叫做二元二次方程組。
。2)解法:消元,轉(zhuǎn)化為解一元二次方程,或者降次,轉(zhuǎn)化為二元一次方程組。
中考數(shù)學(xué)知識點(diǎn)總結(jié)9
一、目標(biāo)與要求
1.了解一元二次方程及有關(guān)概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應(yīng)用一元二次方程概念解決一些簡單題目。
2.掌握通過配方法、公式法、因式分解法降次──解一元二次方程,掌握依據(jù)實(shí)際問題建立一元二次方程的數(shù)學(xué)模型的方法,應(yīng)用熟練掌握以上知識解決問題。
二、重點(diǎn)
1.一元二次方程及其它有關(guān)的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題。
2.判定一個(gè)數(shù)是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會降次──轉(zhuǎn)化的數(shù)學(xué)思想。
5.利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個(gè)問題.
三、難點(diǎn)
1.一元二次方程配方法解題。
2.通過提出問題,建立一元二次方程的'數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
3.用公式法解一元二次方程時(shí)的討論。
4.通過根據(jù)平方根的意義解形如x2=n,知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程實(shí)際問題的數(shù)學(xué)模型,方程解與實(shí)際問題解的區(qū)別。
6.由實(shí)際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實(shí)際問題的根。
7.知識框架
四、知識點(diǎn)、概念總結(jié)
1.一元二次方程:方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四個(gè)特點(diǎn):
(1)含有一個(gè)未知數(shù);
(2)且未知數(shù)次數(shù)最高次數(shù)是2;
(3)是整式方程。要判斷一個(gè)方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進(jìn)行整理。如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個(gè)方程就為一元二次方程。
(4)將方程化為一般形式:ax2+bx+c=0時(shí),應(yīng)滿足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng)。
中考數(shù)學(xué)知識點(diǎn)總結(jié)10
1、隨機(jī)事件
必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件。
不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件。
必然事件和不可能事件統(tǒng)稱確定性事件。
隨機(jī)事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機(jī)事件。
2、概率
(1)概率的性質(zhì):P(必然事件)=1;P(不可能事件)=0;0
(2)一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包括其中的m種結(jié)果,那么事件A發(fā)生的概率。
1、能通過列表、畫樹狀圖等方法列出簡單隨機(jī)事件所有可能的結(jié)果,以及指定事件發(fā)生的所有可能結(jié)果,了解事件的概率。
2、知道通過大量的重復(fù)試驗(yàn),可以用頻率來估計(jì)概率。
1、必然事件、不可能事件、隨機(jī)事件的辨析。
2、簡單事件的概率求解。
3、用頻率估計(jì)概率。
4、用概率解決實(shí)際問題。
5、概率與其它知識的綜合運(yùn)用。
1、下列事件中是必然事件的是( )
A、拉薩明日刮西北風(fēng) B、拋擲一枚硬幣,落地后正面朝上
C、當(dāng)x是實(shí)數(shù)時(shí),x2≥0 D、三角形內(nèi)角和是360°
2、下列說法正確的是( )
A、拉薩市“明天降雨的概率是75%”表示明天有75%的時(shí)間會降雨
B、隨機(jī)拋擲一枚均勻的硬幣,落地后正面一定朝上
C、在一次抽獎(jiǎng)活動中,“中獎(jiǎng)的概率是1%”表示抽獎(jiǎng)100次就一定會中獎(jiǎng)
D、在平面內(nèi),平行四邊形的兩條對角線一定相交
3、下列事件是不可能事件的是( )
A、一個(gè)角和它的余角的和是90°
B、接連擲10次骰子都是6點(diǎn)朝上
C、一個(gè)有理數(shù)和它的倒數(shù)之和等于0
D、一個(gè)有理數(shù)小于它的倒數(shù)
4、下列事件中是必然事件的是( )
A、從一個(gè)裝有藍(lán)、白兩色球的缸里摸出一個(gè)球,摸出的球是白球
B、扎西的`自行車輪胎被釘子扎壞
C、卓瑪期末考試數(shù)學(xué)成績一定得滿分
D、將菜籽油滴入水中,菜籽油會浮在水面上
5、下列說法中,正確的是( )
A、生活中,如果一個(gè)事件不是不可能事件,那么它就必然發(fā)生
B、生活中,如果一個(gè)事件可能發(fā)生,那么它就是必然事件
C、生活中,如果一個(gè)事件發(fā)生的可能性很大,那么它也可能不發(fā)生
D、生活中,如果一個(gè)事件不是必然事件,那么它就不可能發(fā)生
6、同時(shí)投擲兩枚質(zhì)地均勻的正方體骰子,骰子的六個(gè)面上分別刻有1到6的點(diǎn)數(shù)。下列事件中是不可能事件的是( )
A、點(diǎn)數(shù)之和為12 B、點(diǎn)數(shù)之和小于3
C、點(diǎn)數(shù)之和大于4且小于8 D、點(diǎn)數(shù)之和為13
7、某個(gè)事件發(fā)生的概率是,這意味著( )
A、在兩次重復(fù)實(shí)驗(yàn)中該事件必有一次發(fā)生 B、在一次實(shí)驗(yàn)中沒有發(fā)生,下次肯定發(fā)生
C、在一次實(shí)驗(yàn)中已經(jīng)發(fā)生,下次肯定不發(fā)生 D、每次實(shí)驗(yàn)中事件發(fā)生的可能性是50%
8、在生產(chǎn)的100件產(chǎn)品中,有95件正品,5件次品。從中任抽一件是次品的概率為( )
A、0.05 B、0.5 C、0.95 D、95
9、有50個(gè)型號相同的乒乓球,其中一等品40個(gè),二等品8個(gè),三等品2個(gè),現(xiàn)從中任取一個(gè)乒乓球,抽到一等品的概率是( )
A、 B、 C、 D、
10、卓瑪?shù)奈木吆兄杏袃芍灩P:一支紅色的、一支綠色的;三支水彩筆:分別是黃色、紅色、黑色,任意拿出一支蠟筆和一支水彩筆,正好都是紅色的概率是( )
A、 B、 C、 D、
11、某燈泡廠的一次質(zhì)量檢查中,從20xx個(gè)燈泡中抽查了100個(gè),其中有6個(gè)不合格,那么在這20xx個(gè)燈泡中,估計(jì)有 個(gè)燈泡不合格。
12、隨意安排甲、乙、丙3人在3天節(jié)日中值班,每人值班1天。
(1)這3人的值班順序共有多少種不同的排列方法?
(2)其中甲排在乙之前的排法有多少種?
(3)甲排在乙之前的概率是多少?
學(xué)數(shù)學(xué)的竅門有哪些
學(xué)數(shù)學(xué)最重要的就是解題能力。要想會做數(shù)學(xué)題目,就要有大量的練習(xí)積累,知道各類型題目的解題步驟與方法,題目做多了就有手感了,再拿出類似的題目才會有解題思路。
其次是學(xué)會預(yù)習(xí)。解題思路不是直接就有的,也并非通過做幾道簡單的題目就能輕易獲得,而是在預(yù)習(xí)過程中不斷積累出來的。因此,預(yù)習(xí)在數(shù)學(xué)學(xué)習(xí)過程中起到了非常重要的作用。預(yù)習(xí)一方面能夠讓大家提前對數(shù)學(xué)知識有所了解,另一方面能夠培養(yǎng)數(shù)學(xué)獨(dú)立學(xué)習(xí)能力。
學(xué)數(shù)學(xué)必須多做題。理解了數(shù)學(xué)基本定義和知識點(diǎn)以后,就需要通過做對應(yīng)習(xí)題去鞏固知識,多做多練才能更好地掌握所學(xué)知識,學(xué)數(shù)學(xué)也是看花容易繡花難的,只有真正動手去做題、經(jīng)歷了實(shí)操過程能學(xué)會。
學(xué)好數(shù)學(xué)有什么技巧
1、有良好的學(xué)習(xí)興趣
(1)課前預(yù)習(xí),對所學(xué)知識產(chǎn)生疑問,產(chǎn)生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點(diǎn)解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時(shí)回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價(jià),變?yōu)楸薏邔W(xué)習(xí)的動力。
2、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣
習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。
中考數(shù)學(xué)知識點(diǎn)總結(jié)11
有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).
注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的.數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
中考數(shù)學(xué)知識點(diǎn)總結(jié)12
(1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類: ① 整數(shù) ②分?jǐn)?shù)
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的.數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù) 0和正整數(shù);a0 a是正數(shù);a0 a是負(fù)數(shù);
a≥0 a是正數(shù)或0 a是非負(fù)數(shù);a≤ 0 ? a是負(fù)數(shù)或0 a是非正數(shù).
有理數(shù)比大。
(1)正數(shù)的絕對值越大,這個(gè)數(shù)越大;
(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;
(3)正數(shù)大于一切負(fù)數(shù);
(4)兩個(gè)負(fù)數(shù)比大小,絕對值大的反而小;
(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)-小數(shù) 0,小數(shù)-大數(shù) 0.
中考數(shù)學(xué)知識點(diǎn)總結(jié)13
圓的初步認(rèn)識
一、圓及圓的相關(guān)量的定義(28個(gè))
1.平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。
3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4.過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的',一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
二、有關(guān)圓的字母表示方法(7個(gè))
圓--⊙ 半徑r 弧--⌒ 直徑d
扇形弧長/圓錐母線l 周長C 面積S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,POP在⊙O上,PO=r;P在⊙O內(nèi),PO
2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。
4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。
5.一條弧所對的圓周角等于它所對的圓心角的一半。
6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。
8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。
9.直線AB與圓O的位置關(guān)系(設(shè)OPAB于P,則PO是AB到圓心的距離):
AB與⊙O相離,POAB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。
11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且Rr,圓心距為P):
外離P外切P=R+r;相交R-r
三、有關(guān)圓的計(jì)算公式
1.圓的周長C=2d 2.圓的面積S=s=3.扇形弧長l=nr/180
4.扇形面積S=n/360=rl/2 5.圓錐側(cè)面積S=rl
四、圓的方程
1.圓的標(biāo)準(zhǔn)方程
在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是
(x-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標(biāo)準(zhǔn)方程對比,其實(shí)D=-2a,E=-2b,F=a^2+b^2
相關(guān)知識:圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.
五、圓與直線的位置關(guān)系判斷
鏈接:圓與直線的位置關(guān)系(一.5)
平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是
討論如下2種情況:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:
如果b^2-4ac0,則圓與直線有2交點(diǎn),即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切
如果b^2-4ac0,則圓與直線有0交點(diǎn),即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離
當(dāng)x1
當(dāng)x=-C/A=x1或x=-C/A=x2時(shí),直線與圓相切
圓的定理:
1不在同一直線上的三點(diǎn)確定一個(gè)圓。
2垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2
1圓的兩條平行弦所夾的弧相等
3圓是以圓心為對稱中心的中心對稱圖形
4圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
希望這篇20xx中考數(shù)學(xué)知識點(diǎn)匯總,可以幫助更好的迎接即將到來的考試!
中考數(shù)學(xué)知識點(diǎn)總結(jié)14
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的`三角函數(shù)值的平方。
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對邊。cscA=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
中考數(shù)學(xué)知識點(diǎn)
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,
y的取值范圍是y0;
、诋(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第一、三象限。在每個(gè)象限內(nèi),y
隨x 的增大而減小。
、賦的取值范圍是x0,
y的取值范圍是y0;
、诋(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第二、四象限。在每個(gè)象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對對應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),過點(diǎn)P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P(yáng)怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
中考數(shù)學(xué)知識點(diǎn)總結(jié)15
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:①整數(shù)②分?jǐn)?shù)
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0?a是負(fù)數(shù)或0a是非正數(shù).
有理數(shù)比大。
(1)正數(shù)的'絕對值越大,這個(gè)數(shù)越大;
(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;
(3)正數(shù)大于一切負(fù)數(shù);
(4)兩個(gè)負(fù)數(shù)比大小,絕對值大的反而小;
(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
【中考數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
中考數(shù)學(xué)圓知識點(diǎn)總結(jié)01-13
中考數(shù)學(xué)知識點(diǎn)總結(jié)05-24
[實(shí)用]中考數(shù)學(xué)知識點(diǎn)總結(jié)05-24
【優(yōu)】中考數(shù)學(xué)知識點(diǎn)總結(jié)06-09
中考數(shù)學(xué)知識點(diǎn)總結(jié)(通用)06-09
中考數(shù)學(xué)知識點(diǎn)總結(jié)【熱門】06-09
中考數(shù)學(xué)知識點(diǎn)總結(jié)(熱)06-10