精品国产一级毛片大全,毛片一级在线,毛片免费观看的视频在线,午夜毛片福利

我要投稿 投訴建議

中考數(shù)學重點知識點歸納

時間:2024-04-26 08:00:37 中考 我要投稿

中考數(shù)學重點知識點歸納大全

  在平平淡淡的學習中,是不是聽到知識點,就立刻清醒了?知識點就是“讓別人看完能理解”或者“通過練習我能掌握”的內(nèi)容。為了幫助大家掌握重要知識點,以下是小編精心整理的中考數(shù)學重點知識點歸納大全,歡迎大家分享。

中考數(shù)學重點知識點歸納大全

中考數(shù)學重點知識點歸納大全1

  中考數(shù)學必考知識點

  知識點1:一元二次方程的基本概念

  1、一元二次方程3x2+5x-2=0的常數(shù)項是-2。

  2、一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2。

  3、一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7。

  4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。

  知識點2:直角坐標系與點的位置

  1、直角坐標系中,點A(3,0)在y軸上。

  2、直角坐標系中,x軸上的任意點的橫坐標為0。

  3、直角坐標系中,點A(1,1)在第一象限。

  4、直角坐標系中,點A(-2,3)在第四象限。

  5、直角坐標系中,點A(-2,1)在第二象限。

  知識點3:已知自變量的值求函數(shù)值

  1、當x=2時,函數(shù)y=的值為1。

  2、當x=3時,函數(shù)y=的值為1。

  3、當x=-1時,函數(shù)y=的值為1。

  知識點4:基本函數(shù)的概念及性質(zhì)

  1、函數(shù)y=-8x是一次函數(shù)。

  2、函數(shù)y=4x+1是正比例函數(shù)。

  3、函數(shù)是反比例函數(shù)。

  4、拋物線y=-3(x-2)2-5的開口向下。

  5、拋物線y=4(x-3)2-10的對稱軸是x=3。

  6、拋物線的頂點坐標是(1,2)。

  7、反比例函數(shù)的圖象在第一、三象限。

  知識點5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)

  1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。

  2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。

  3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。

  知識點6:特殊三角函數(shù)值

  1、cos30°=。

  2、sin260°+cos260°=1。

  3、2sin30°+tan45°=2。

  4、tan45°=1。

  5、cos60°+sin30°=1。

  知識點7:圓的基本性質(zhì)

  1、半圓或直徑所對的圓周角是直角。

  2、任意一個三角形一定有一個外接圓。

  3、在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

  4、在同圓或等圓中,相等的圓心角所對的弧相等。

  5、同弧所對的圓周角等于圓心角的一半。

  6、同圓或等圓的半徑相等。

  7、過三個點一定可以作一個圓。

  8、長度相等的兩條弧是等弧。

  9、在同圓或等圓中,相等的.圓心角所對的弧相等。

  10、經(jīng)過圓心平分弦的直徑垂直于弦。

  知識點8:直線與圓的位置關(guān)系

  1、直線與圓有唯一公共點時,叫做直線與圓相切。

  2、三角形的外接圓的圓心叫做三角形的外心。

  3、弦切角等于所夾的弧所對的圓心角。

  4、三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。

  5、垂直于半徑的直線必為圓的切線。

  6、過半徑的外端點并且垂直于半徑的直線是圓的切線。

  7、垂直于半徑的直線是圓的切線。

  8、圓的切線垂直于過切點的半徑。

中考數(shù)學重點知識點歸納大全2

  中考沖刺數(shù)學知識點的幾個復(fù)習建議:

  1)所有的知識點自己先復(fù)習一遍,標記好那些掌握不扎實的知識,第二輪復(fù)習的重點!

  2)對于標記不扎實的知識,如果實在不理解,回到課本中查收相應(yīng)的內(nèi)容,特別是結(jié)合例題理解

  3)平常學校一定有很多練習,把做錯的題目和難題當成寶貝,因為我們要想進步就這是捷徑——理解消化錯題,所有保持積極的心態(tài)去面對那些錯題難題吧。

  4)對于學過思維導圖的同學,建議將這些知識點按章節(jié)梳理成知識體系,平常復(fù)習太好用了。

  以下是詳細的知識點:

  一、一元一次方程根的情況

  △=b2-4ac

  當△>0時,一元二次方程有2個不相等的實數(shù)根;

  當△=0時,一元二次方程有2個相同的實數(shù)根;

  當△<0時,一元二次方程沒有實數(shù)根2、平行四邊形的性質(zhì):

 、 兩組對邊分別平行的四邊形叫做平行四邊形。

  ② 平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。

  ③ 平行四邊形的對邊/對角相等。

  ④平行四邊形的對角線互相平分。

  菱形:①一組鄰邊相等的平行四邊形是菱形

 、陬I(lǐng)心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。

 、叟卸l件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。

  矩形與正方形:

 、 有一個內(nèi)角是直角的平行四邊形叫做矩形。

  ② 矩形的對角線相等,四個角都是直角。

 、 對角線相等的平行四邊形是矩形。

 、 正方形具有平行四邊形,矩形,菱形的一切性質(zhì)。

 、菀唤M鄰邊相等的矩形是正方形。

  多邊形:

 、貼邊形的內(nèi)角和等于(N-2)180度

  ②多邊心內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內(nèi)角和(都等于360度)

  平均數(shù):對于N個數(shù)X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數(shù)的算術(shù)平均數(shù),記為X

  加權(quán)平均數(shù):一組數(shù)據(jù)里各個數(shù)據(jù)的重要程度未必相同,因而,在計算這組數(shù)據(jù)的平均數(shù)時往往給每個數(shù)據(jù)加一個權(quán),這就是加權(quán)平均數(shù)。

  二、基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補角相等

  4、同角或等角的余角相等

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯角相等,兩直線平行

  11、同旁內(nèi)角互補,兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯角相等

  14、兩直線平行,同旁內(nèi)角互補

  15、定理 三角形兩邊的和大于第三邊

  16、推論 三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°

  18、推論1 直角三角形的兩個銳角互余

  19、推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20、推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  21、全等三角形的對應(yīng)邊、對應(yīng)角相等

  22、邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  23、角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的 兩個三角形全等

  24、推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  25、邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等

  26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  27、定理1 在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2 到一個角的兩邊的距離相同的.點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)

  31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33、推論3 等邊三角形的各角都相等,并且每一個角都等于60°

  34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35、推論1 三個角都相等的三角形是等邊三角形

  36、推論 2 有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1 關(guān)于某條直線對稱的兩個圖形是全等形

  43、定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  44、定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  45、逆定理 如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

  48、定理 四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

  51、推論 任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1 平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2 平行四邊形的對邊相等

  54、推論 夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分

  56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形

  58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1 矩形的四個角都是直角

  61、矩形性質(zhì)定理2 矩形的對角線相等

  62、矩形判定定理1 有三個角是直角的四邊形是矩形

  63、矩形判定定理2 對角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1 菱形的四條邊都相等

  65、菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1 四邊都相等的四邊形是菱形

  68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1 關(guān)于中心對稱的兩個圖形是全等的

  72、定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理 如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h

  83、(1)比例的基本性質(zhì):

  如果a:b=c:d,那么ad=bc

  如果 ad=bc ,那么a:b=c:d

  84、(2)合比性質(zhì):

  如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):

  如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87、推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90、定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93、判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3 三邊對應(yīng)成比例,兩三角形相似(SSS)

  95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  96、性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2 相似三角形周長的比等于相似比

  98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101、圓是定點的距離等于定長的點的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理 不在同一直線上的三點確定一個圓。

  110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧